Domain disentanglement and contrastive learning with source-guided sampling for unsupervised domain adaptation person re-identification

被引:0
|
作者
Wu, Cheng-Hsuan [1 ]
Liu, An-Sheng [1 ]
Chen, Chiung-Tao [1 ]
Fu, Li-Chen [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[2] NTU Ctr Artificial Intelligence & Adv Robot AIROBO, Taipei 10617, Taiwan
关键词
Deep learning; Person re-identification; Domain adaptation; Domain disentanglement; Contrastive learning;
D O I
10.1007/s00138-024-01613-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, fully supervised Person re-id methods have already been well developed. Still, they cannot be easily applied to real-life applications because of the domain gap between real-world databases and training datasets. And annotating ground truth label for the entire surveillance system with multiple cameras and videos are labor-intensive and impracticable in the real application. Besides, as the awareness of the right to privacy is rising, it becomes more challenging to collect sufficient training data from the public. Thence, the difficulty of constructing a new dataset for deployment not only arises from the labor cost of labeling but also because the raw data from the public are hard to come by. To be better adapted to real-life system deployment, we proposed an unsupervised domain adaptation based method, which involves Domain Disentanglement Network and Source-Guided Contrastive learning (SGCL). DD-Net first narrows down the domain gap between two datasets, and then SGCL utilizes the labeled source dataset as the clue to guide the training on the target domain. With these two modules, the knowledge transfer can be completed successfully from the training dataset to real-world scenarios. The conducted experiment shows that the proposed method is competitive with the state-of-the-art methods on two public datasets and even outperforms them under the setting of the small-scale target dataset. Therefore, not only the Person Re-ID, but also the object tracking in video or surveillance system can benefit from our new approach when we went to deploy to different environments.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Hybrid Contrastive Learning for Unsupervised Person Re-Identification
    Si, Tongzhen
    He, Fazhi
    Zhang, Zhong
    Duan, Yansong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4323 - 4334
  • [32] CUPR: Contrastive Unsupervised Learning for Person Re-identification
    Khaldi, Khadija
    Shah, Shishir K.
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 92 - 100
  • [33] Attribute-Aligned Domain-Invariant Feature Learning for Unsupervised Domain Adaptation Person Re-Identification
    Li, Huafeng
    Chen, Yiwen
    Tao, Dapeng
    Yu, Zhengtao
    Qi, Guanqiu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 1480 - 1494
  • [34] Unsupervised multi-source domain adaptation for person re-identification via sample weighting
    Tian, Qing
    Cheng, Yao
    INTELLIGENT DATA ANALYSIS, 2024, 28 (04) : 943 - 960
  • [35] Momentum source-proxy guided initialization for unsupervised domain adaptive person re-identification
    Xi, Jiali
    Zhou, Qin
    Li, Xinzhe
    Zheng, Shibao
    NEUROCOMPUTING, 2022, 483 : 116 - 126
  • [36] HC-GCN: hierarchical contrastive graph convolutional network for unsupervised domain adaptation on person re-identification
    Si Chen
    Bolun Xu
    Miaohui Zhang
    Yan Yan
    Xia Du
    Weiwei Zhuang
    Yun Wu
    Multimedia Systems, 2023, 29 : 2779 - 2790
  • [37] HC-GCN: hierarchical contrastive graph convolutional network for unsupervised domain adaptation on person re-identification
    Chen, Si
    Xu, Bolun
    Zhang, Miaohui
    Yan, Yan
    Du, Xia
    Zhuang, Weiwei
    Wu, Yun
    MULTIMEDIA SYSTEMS, 2023, 29 (5) : 2779 - 2790
  • [38] Unsupervised Domain Adaptation by Multi-Loss Gap Minimization Learning for Person Re-Identification
    Tao, Xuefeng
    Kong, Jun
    Jiang, Min
    Liu, Tianshan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) : 4404 - 4416
  • [39] Learning Feature Fusion for Unsupervised Domain Adaptive Person Re-identification
    Ding, Jin
    Zhou, Xue
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2613 - 2619
  • [40] Learning a Domain-Invariant Embedding for Unsupervised Person Re-identification
    Pu, Nan
    Georgiou, T. K.
    Bakker, Erwin M.
    Lew, Michael S.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,