Microwave characterization of dielectric materials using Bayesian neural networks

被引:9
|
作者
Acikgoz, H. [1 ]
Bihan, Y.L. [1 ]
Meyer, O. [1 ]
Pichon, L. [1 ]
机构
[1] Laboratoire de Génie Electrique de Paris, CNRS UMR8507, SUPELEC UPMC Univ. Paris 06, Univ. Paris-Sud, 11 rue Joliot-Curie, Plateau de Moulon, Gif-sur-Yvette Cedex,91192, France
关键词
Finite element method - Permittivity - Dielectric materials - Bayesian networks;
D O I
10.2528/PIERC08030603
中图分类号
学科分类号
摘要
This paper shows the efficiency of neural networks (NN), coupled with the finite element method (FEM), to evaluate the broadband properties of dielectric materials. A characterization protocol is built to characterize dielectric materials and NN are used in order to provide the estimated permittivity. The FEM is used to create the data set required to train the NN. A method based on Bayesian regularization ensures a good generalization capability of the NN. It is shown that NN can determine the permittivity of materials with a high accuracy and that the Bayesian regularization greatly simplifies their implementation. © 2008, Electromagnetics Academy. All rights reserved.
引用
收藏
页码:169 / 182
相关论文
共 50 条
  • [41] DIELECTRIC MATERIALS FOR MICROWAVE RESONATORS
    MAGE, JC
    LABEYRIE, M
    ONDE ELECTRIQUE, 1990, 70 (05): : 6 - 13
  • [42] BAYESIAN NEURAL NETWORKS AND DENSITY NETWORKS
    MACKAY, DJC
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1995, 354 (01): : 73 - 80
  • [43] Neural networks for microwave characterization of material samples in rectangular cavities
    Penirschke, A
    Freese, J
    Schüssler, M
    Jakoby, R
    PROCEEDINGS OF THE 3RD IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2003, : 609 - 611
  • [44] NEW EVALUATION METHOD OF DIELECTRIC MATERIALS USING A MICROWAVE TECHNIQUE
    UMEDA, T
    MIYASHITA, T
    KAKO, Y
    IEEE TRANSACTIONS ON ELECTRICAL INSULATION, 1980, 15 (04): : 340 - 349
  • [46] HEAT TREATMENT OF A ROD DIELECTRIC MATERIALS USING MICROWAVE RADIATION
    Nefedov, V. N.
    Mamontov, A. V.
    Saygin, I. A.
    2016 INTERNATIONAL CONFERENCE ON ACTUAL PROBLEMS OF ELECTRON DEVICES ENGINEERING (APEDE), VOL 2, 2016, : 436 - 441
  • [47] A cryogenic post dielectric resonator for precise microwave characterization of planar dielectric materials for superconducting circuits
    Jacob, MV
    Mazierska, J
    Krupka, J
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2004, 17 (03): : 358 - 362
  • [48] Prediction of dielectric properties of ferroelectric materials based on deep neural networks
    Wang, Jiachen
    Cui, Ziyu
    Zhang, Xin
    Zhao, Jikai
    Li, Fan
    Zhou, Zhongbin
    Teah, Nathan Saye
    Gao, Yunfei
    Zhao, Gaochao
    Yang, Yang
    SCIENCE PROGRESS, 2025, 108 (01)
  • [49] ON FITTING DIELECTRIC SPECTRA USING ARTIFICIAL NEURAL NETWORKS
    KELL, DB
    DAVEY, CL
    BIOELECTROCHEMISTRY AND BIOENERGETICS, 1992, 28 (03): : 425 - 434
  • [50] Dielectric testing of spark plugs using neural networks
    Walters, S. D.
    Howson, P. A.
    Howlett, R. J.
    2007 42ND INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE, VOLS 1-3, 2007, : 518 - 523