Microwave characterization of dielectric materials using Bayesian neural networks

被引:9
|
作者
Acikgoz, H. [1 ]
Bihan, Y.L. [1 ]
Meyer, O. [1 ]
Pichon, L. [1 ]
机构
[1] Laboratoire de Génie Electrique de Paris, CNRS UMR8507, SUPELEC UPMC Univ. Paris 06, Univ. Paris-Sud, 11 rue Joliot-Curie, Plateau de Moulon, Gif-sur-Yvette Cedex,91192, France
关键词
Finite element method - Permittivity - Dielectric materials - Bayesian networks;
D O I
10.2528/PIERC08030603
中图分类号
学科分类号
摘要
This paper shows the efficiency of neural networks (NN), coupled with the finite element method (FEM), to evaluate the broadband properties of dielectric materials. A characterization protocol is built to characterize dielectric materials and NN are used in order to provide the estimated permittivity. The FEM is used to create the data set required to train the NN. A method based on Bayesian regularization ensures a good generalization capability of the NN. It is shown that NN can determine the permittivity of materials with a high accuracy and that the Bayesian regularization greatly simplifies their implementation. © 2008, Electromagnetics Academy. All rights reserved.
引用
收藏
页码:169 / 182
相关论文
共 50 条
  • [21] Neural Network Approach for Dielectric Characterization of Tissues in Microwave Frequencies using Coplanar Waveguide Transmission
    Mattsson, Viktor
    Perez, Mauricio D.
    Dematties, Dario
    Augustine, Robin
    2020 14TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP 2020), 2020,
  • [22] Automatic materials characterization from infrared spectra using convolutional neural networks
    Jung, Guwon
    Jung, Son Gyo
    Cole, Jacqueline M.
    CHEMICAL SCIENCE, 2023, 14 (13) : 3600 - 3609
  • [23] Using neural networks for the synthesis of microwave devices
    Adamenko, V
    Mirskykh, G.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2012, (49): : 102 - 107
  • [24] Microwave MEMS Antenna Sensor Characterization and Target Detection Using Artificial Neural Networks
    Hutchings, Douglas A.
    El-Shenawee, Magda
    IEEE SENSORS JOURNAL, 2014, 14 (08) : 2461 - 2468
  • [25] Microwave detection and dielectric characterization of cylindrical objects from amplitude-only data by means of neural networks
    Bermani, E
    Caorsi, S
    Raffetto, M
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2002, 50 (09) : 1309 - 1314
  • [26] BAYESIAN NEURAL NETWORKS
    KONONENKO, I
    BIOLOGICAL CYBERNETICS, 1989, 61 (05) : 361 - 370
  • [27] Detection of gravitational waves using Bayesian neural networks
    Lin, Yu-Chiung
    Wu, Jiun-Huei Proty
    PHYSICAL REVIEW D, 2021, 103 (06)
  • [28] Scalable Bayesian Optimization Using Deep Neural Networks
    Snoek, Jasper
    Rippel, Oren
    Swersky, Kevin
    Kiros, Ryan
    Satish, Nadathur
    Sundaram, Narayanan
    Patwary, Md. Mostofa Ali
    Prabhat
    Adams, Ryan P.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 2171 - 2180
  • [29] Bayesian training of neural networks using genetic programming
    Marwala, Tshilidzi
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 3622 - 3626
  • [30] Pitting potential modeling using Bayesian neural networks
    Jimenez-Come, M. J.
    Turias, I. J.
    Trujillo, F. J.
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 35 : 30 - 33