Microwave characterization of dielectric materials using Bayesian neural networks

被引:9
|
作者
Acikgoz, H. [1 ]
Bihan, Y.L. [1 ]
Meyer, O. [1 ]
Pichon, L. [1 ]
机构
[1] Laboratoire de Génie Electrique de Paris, CNRS UMR8507, SUPELEC UPMC Univ. Paris 06, Univ. Paris-Sud, 11 rue Joliot-Curie, Plateau de Moulon, Gif-sur-Yvette Cedex,91192, France
关键词
Finite element method - Permittivity - Dielectric materials - Bayesian networks;
D O I
10.2528/PIERC08030603
中图分类号
学科分类号
摘要
This paper shows the efficiency of neural networks (NN), coupled with the finite element method (FEM), to evaluate the broadband properties of dielectric materials. A characterization protocol is built to characterize dielectric materials and NN are used in order to provide the estimated permittivity. The FEM is used to create the data set required to train the NN. A method based on Bayesian regularization ensures a good generalization capability of the NN. It is shown that NN can determine the permittivity of materials with a high accuracy and that the Bayesian regularization greatly simplifies their implementation. © 2008, Electromagnetics Academy. All rights reserved.
引用
收藏
页码:169 / 182
相关论文
共 50 条
  • [31] Using Bayesian neural networks to classify forest scenes
    Vehtari, A
    Heikkonen, J
    Lampinen, J
    Juujarvi, J
    INTELLIGENT ROBOTS AND COMPUTER VISION XVII: ALGORITHMS, TECHNIQUES, AND ACTIVE VISION, 1998, 3522 : 66 - 73
  • [32] Bayesian training of neural networks using genetic programming
    Marwala, Tshilidzi
    PATTERN RECOGNITION LETTERS, 2007, 28 (12) : 1452 - 1458
  • [33] Quantifying Uncertainty of Portfolios using Bayesian Neural Networks
    Esener, Suleyman
    Wegner, Enrico
    Almeida, Rui Jorge
    Basturk, Nalan
    Rodrigues, Paulo
    2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,
  • [34] TensorBNN: Bayesian inference for neural networks using TensorFlow
    Kronheim, B. S.
    Kuchera, M. P.
    Prosper, H. B.
    COMPUTER PHYSICS COMMUNICATIONS, 2022, 270
  • [35] Using Bayesian neural networks to classify segmented images
    Vivarelli, F
    Williams, CKI
    FIFTH INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 1997, (440): : 268 - 273
  • [36] Bayesian Geophysical Inversion Using Invertible Neural Networks
    Zhang, Xin
    Curtis, Andrew
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2021, 126 (07)
  • [37] Diagnosis of Headaches Types Using Artificial Neural Networks and Bayesian Networks
    Fenerich, Amanda
    Steiner, Maria Teresinha
    Nievola, Julio Cesar
    Mendes, Karina
    Tsutsumi, Diego Paolo
    dos Santos, Bruno
    IEEE LATIN AMERICA TRANSACTIONS, 2020, 18 (01) : 59 - 66
  • [38] Synthesis and Characterization of Ceramic Dielectric Resonator Materials for Microwave Communication Technology
    Tyagi, Anand K.
    Parul
    INTERNATIONAL CONFERENCE ON ADVANCES IN MANUFACTURING AND MATERIALS ENGINEERING (ICAMME 2014), 2014, 5 : 1322 - 1331
  • [39] THz Spectroscopy of Ceramic and Polycrystalline Materials for Characterization of Microwave Dielectric Properties
    Siegrist, K. M.
    Plusquellic, D. F.
    Thomas, M. E.
    35TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ 2010), 2010,
  • [40] Microwave characterization of dielectric materials from 8 to 110 GHz using a free-space setup
    Hollinger, RD
    Jose, KA
    Tellakula, A
    Varadan, VV
    Varadan, VK
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2000, 26 (02) : 100 - 105