Microwave characterization of dielectric materials using Bayesian neural networks

被引:9
|
作者
Acikgoz, H. [1 ]
Bihan, Y.L. [1 ]
Meyer, O. [1 ]
Pichon, L. [1 ]
机构
[1] Laboratoire de Génie Electrique de Paris, CNRS UMR8507, SUPELEC UPMC Univ. Paris 06, Univ. Paris-Sud, 11 rue Joliot-Curie, Plateau de Moulon, Gif-sur-Yvette Cedex,91192, France
关键词
Finite element method - Permittivity - Dielectric materials - Bayesian networks;
D O I
10.2528/PIERC08030603
中图分类号
学科分类号
摘要
This paper shows the efficiency of neural networks (NN), coupled with the finite element method (FEM), to evaluate the broadband properties of dielectric materials. A characterization protocol is built to characterize dielectric materials and NN are used in order to provide the estimated permittivity. The FEM is used to create the data set required to train the NN. A method based on Bayesian regularization ensures a good generalization capability of the NN. It is shown that NN can determine the permittivity of materials with a high accuracy and that the Bayesian regularization greatly simplifies their implementation. © 2008, Electromagnetics Academy. All rights reserved.
引用
收藏
页码:169 / 182
相关论文
共 50 条
  • [1] Detection and Characterization of Buried Macroscopic Cracks Inside Dielectric Materials by Microwave Techniques and Artificial Neural Networks
    Maazi, M.
    Benzaim, O.
    Glay, D.
    Lasri, T.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2008, 57 (12) : 2819 - 2826
  • [2] Estimation of Microwave Dielectric Constant Using Artificial Neural Networks
    Sujatha, K.
    Ponmagal, R. S.
    Saravanan, G.
    Bhavani, Nallamilli P. G.
    EMERGING TRENDS IN EXPERT APPLICATIONS AND SECURITY, 2019, 841 : 41 - 46
  • [3] Shock Properties Characterization of Dielectric Materials Using Millimeter-Wave Interferometry and Convolutional Neural Networks
    Mapas, Jeremi
    Lefrancois, Alexandre
    Aubert, Herve
    Comte, Sacha
    Barbarin, Yohan
    Lavayssiere, Maylis
    Rougier, Benoit
    Dore, Alexandre
    SENSORS, 2023, 23 (10)
  • [4] Determination of the composition of foodstuff using microwave dielectric spectra and artificial neural networks
    Daschner, F
    Knöchel, R
    Kent, M
    TECHNISCHES MESSEN, 2002, 69 (01): : 19 - 24
  • [5] On the design, analysis, and characterization of materials using computational neural networks
    Sumpter, BG
    Noid, DW
    ANNUAL REVIEW OF MATERIALS SCIENCE, 1996, 26 : 223 - 277
  • [6] Neural networks using Bayesian training
    Andrejková, G
    Levicky, M
    KYBERNETIKA, 2003, 39 (05) : 511 - 520
  • [7] Parameter estimation for the cosmic microwave background with Bayesian neural networks
    Hortua, Hector J.
    Volpi, Riccardo
    Marinelli, Dimitri
    Malago, Luigi
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [8] Microwave imaging:: characterization of unknown dielectric or conductive materials
    Féron, O
    Duchêne, B
    Mohammad-Djafari, A
    Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 2005, 803 : 231 - 238
  • [9] Coupled ring resonator for microwave characterization of dielectric materials
    Kapoor, Mahima
    Daya, K. S.
    Tyagi, G. S.
    INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 2012, 4 (02) : 241 - 246
  • [10] Transmission microwave spectroscopy for local characterization of dielectric materials
    Lucibello, Andrea
    Joseph, Christopher Hardly
    Proietti, Emanuela
    Sardi, Giovanni Maria
    Capoccia, Giovanni
    Marcelli, Romolo
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2017, 35 (01):