Shadow of a renormalization group improved rotating black hole

被引:0
|
作者
Sanchez, Luis A. [1 ]
机构
[1] Univ Nacl Colombia, Dept Fis, AA 3840, Medellin, Colombia
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 10期
关键词
TELESCOPE RESULTS. I; GRAVITATIONAL COLLAPSE; PARAMETER-ESTIMATION; SINGULARITIES;
D O I
10.1140/epjc/s10052-024-13398-x
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a study on quantum gravity effects on the shadow of a rotating black hole (BH) obtained in the setting of the asymptotically safe gravity. The rotating metric, which results from a static regular one recently presented in the literature, is generated by using the generalized Newman-Janis algorithm. The novelty of the static regular metric lies in the fact that it is the outcome of an effective Lagrangian which describes dust whose spherically symmetric collapse is non-singular as a consequence of the antiscreening character of gravity at small distances. The effective Lagrangian includes a multiplicative coupling, denoted as chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}, with the Lagrangian of the collapsing fluid. The resulting exterior metric for large radii depends on a free parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} which captures the quantum gravity effects. The form of the coupling chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} and its connection with the quantum parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} are determined by the running of the Newton coupling G(k) along a renormalization group trajectory that stops at the ultraviolet non-gaussian fixed point of the asymptotic safety theory for quantum gravity. Varying both the spin parameter a star\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{\star }$$\end{document} and the quantum parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}, we explore the quantum gravity effects on several astronomical observables used to describe the morphology of the shadow cast by rotating BHs. In order to obtain constraints on the parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}, we confront our results with the recent Event Horizon Telescope (EHT) observations of the shadows of the supermassive BHs M87 & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M87}<^>*$$\end{document} and Sgr A & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {A}<^>*$$\end{document}. We find that the ranges of variation of all the studied shadow observables fall entirely within the ranges determined by the EHT collaboration. We then conclude that the current astronomical data do not rule out the renormalization group improved rotating BH.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Black hole shadow of a rotating polytropic black hole by the Newman-Janis algorithm without complexification
    Contreras, Ernesto
    Ramirez-Velasquez, J. M.
    Rincon, Angel
    Panotopoulos, Grigoris
    Bargueno, Pedro
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (09):
  • [42] Using the shadow of a black hole to examine the energy exchange between axion matter and a rotating black hole
    Kuang, Xiao-Mei
    Meng, Yuan
    Papantonopoulos, Eleftherios
    Wang, Xi-Jing
    PHYSICAL REVIEW D, 2024, 110 (06)
  • [43] Shadow and deflection angle of rotating black hole in asymptotically safe gravity
    Kumar, Rahul
    Singh, Balendra Pratap
    Ghosh, Sushant G.
    ANNALS OF PHYSICS, 2020, 420
  • [44] Constraining the deformation of a rotating black hole mimicker from its shadow
    Li, Song
    Mirzaev, Temurbek
    Abdujabbarov, Ahmadjon A.
    Malafarina, Daniele
    Ahmedov, Bobomurat
    Han, Wen-Biao
    PHYSICAL REVIEW D, 2022, 106 (08)
  • [45] Shadow cast by a rotating charged black hole in quintessential dark energy
    Khan, Saeed Ullah
    Ren, Jingli
    PHYSICS OF THE DARK UNIVERSE, 2020, 30
  • [46] 2D Black hole and holographic renormalization group
    Dasgupta, Satabhisa
    Dasgupta, Tathagata
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (02):
  • [47] Renormalization group and black hole production in large extra dimensions
    Koch, Benjamin
    PHYSICS LETTERS B, 2008, 663 (04) : 334 - 337
  • [48] Exact renormalization group, entanglement entropy, and black hole entropy
    Miqueleto, Joao Lucas
    Landulfo, Andre G. S.
    PHYSICAL REVIEW D, 2021, 103 (04)
  • [49] The Shadow of the Black Hole
    不详
    NATURE ASTRONOMY, 2020, 4 (12): : 1123 - 1123
  • [50] The Shadow of the Black Hole
    Commissariat, Tushna
    PHYSICS WORLD, 2020, 33 (11) : 50 - 51