Shadow of a renormalization group improved rotating black hole

被引:0
|
作者
Sanchez, Luis A. [1 ]
机构
[1] Univ Nacl Colombia, Dept Fis, AA 3840, Medellin, Colombia
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 10期
关键词
TELESCOPE RESULTS. I; GRAVITATIONAL COLLAPSE; PARAMETER-ESTIMATION; SINGULARITIES;
D O I
10.1140/epjc/s10052-024-13398-x
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a study on quantum gravity effects on the shadow of a rotating black hole (BH) obtained in the setting of the asymptotically safe gravity. The rotating metric, which results from a static regular one recently presented in the literature, is generated by using the generalized Newman-Janis algorithm. The novelty of the static regular metric lies in the fact that it is the outcome of an effective Lagrangian which describes dust whose spherically symmetric collapse is non-singular as a consequence of the antiscreening character of gravity at small distances. The effective Lagrangian includes a multiplicative coupling, denoted as chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}, with the Lagrangian of the collapsing fluid. The resulting exterior metric for large radii depends on a free parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} which captures the quantum gravity effects. The form of the coupling chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} and its connection with the quantum parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} are determined by the running of the Newton coupling G(k) along a renormalization group trajectory that stops at the ultraviolet non-gaussian fixed point of the asymptotic safety theory for quantum gravity. Varying both the spin parameter a star\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{\star }$$\end{document} and the quantum parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}, we explore the quantum gravity effects on several astronomical observables used to describe the morphology of the shadow cast by rotating BHs. In order to obtain constraints on the parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}, we confront our results with the recent Event Horizon Telescope (EHT) observations of the shadows of the supermassive BHs M87 & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M87}<^>*$$\end{document} and Sgr A & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {A}<^>*$$\end{document}. We find that the ranges of variation of all the studied shadow observables fall entirely within the ranges determined by the EHT collaboration. We then conclude that the current astronomical data do not rule out the renormalization group improved rotating BH.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Shadow of a rotating squashed Kaluza-Klein black hole
    Fen Long
    Jieci Wang
    Songbai Chen
    Jiliang Jing
    Journal of High Energy Physics, 2019
  • [32] Shadow of a charged rotating black hole in f(R) gravity
    Sara Dastan
    Reza Saffari
    Saheb Soroushfar
    The European Physical Journal Plus, 137
  • [33] Shadow of a rotating squashed Kaluza-Klein black hole
    Long, Fen
    Wang, Jieci
    Chen, Songbai
    Jing, Jiliang
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)
  • [34] Shadow of a charged rotating black hole in f(R) gravity
    Dastan, Sara
    Saffari, Reza
    Soroushfar, Saheb
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (09):
  • [35] Shadow of the rotating black hole with quintessential energy in the presence of plasma
    Abdujabbarov, Ahmadjon
    Toshmatov, Bobir
    Stuchlik, Zdenek
    Ahmedov, Bobomurat
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2017, 26 (06):
  • [36] Shadow of a Kaluza-Klein rotating dilaton black hole
    Amarilla, Leonardo
    Eiroa, Ernesto F.
    PHYSICAL REVIEW D, 2013, 87 (04):
  • [37] Shadow of a charged rotating non-commutative black hole
    Sharif, M.
    Iftikhar, Sehrish
    EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (11):
  • [38] Rotating black hole shadow in perfect fluid dark matter
    Hou, Xian
    Xu, Zhaoyi
    Wang, Jiancheng
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (12):
  • [39] Shadow of a charged rotating non-commutative black hole
    M. Sharif
    Sehrish Iftikhar
    The European Physical Journal C, 2016, 76
  • [40] Black hole mass dynamics and renormalization group evolution
    Goldberger, Walter D.
    Ross, Andreas
    Rothstein, Ira Z.
    PHYSICAL REVIEW D, 2014, 89 (12):