Shadow of a renormalization group improved rotating black hole

被引:0
|
作者
Sanchez, Luis A. [1 ]
机构
[1] Univ Nacl Colombia, Dept Fis, AA 3840, Medellin, Colombia
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 10期
关键词
TELESCOPE RESULTS. I; GRAVITATIONAL COLLAPSE; PARAMETER-ESTIMATION; SINGULARITIES;
D O I
10.1140/epjc/s10052-024-13398-x
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a study on quantum gravity effects on the shadow of a rotating black hole (BH) obtained in the setting of the asymptotically safe gravity. The rotating metric, which results from a static regular one recently presented in the literature, is generated by using the generalized Newman-Janis algorithm. The novelty of the static regular metric lies in the fact that it is the outcome of an effective Lagrangian which describes dust whose spherically symmetric collapse is non-singular as a consequence of the antiscreening character of gravity at small distances. The effective Lagrangian includes a multiplicative coupling, denoted as chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}, with the Lagrangian of the collapsing fluid. The resulting exterior metric for large radii depends on a free parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} which captures the quantum gravity effects. The form of the coupling chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} and its connection with the quantum parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} are determined by the running of the Newton coupling G(k) along a renormalization group trajectory that stops at the ultraviolet non-gaussian fixed point of the asymptotic safety theory for quantum gravity. Varying both the spin parameter a star\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{\star }$$\end{document} and the quantum parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}, we explore the quantum gravity effects on several astronomical observables used to describe the morphology of the shadow cast by rotating BHs. In order to obtain constraints on the parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}, we confront our results with the recent Event Horizon Telescope (EHT) observations of the shadows of the supermassive BHs M87 & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M87}<^>*$$\end{document} and Sgr A & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {A}<^>*$$\end{document}. We find that the ranges of variation of all the studied shadow observables fall entirely within the ranges determined by the EHT collaboration. We then conclude that the current astronomical data do not rule out the renormalization group improved rotating BH.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Weak and strong deflection gravitational lensing by a renormalization group improved Schwarzschild black hole
    Xu Lu
    Yi Xie
    The European Physical Journal C, 2019, 79
  • [22] Weak and strong deflection gravitational lensing by a renormalization group improved Schwarzschild black hole
    Lu, Xu
    Xie, Yi
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (12):
  • [23] Renormalization group improved black hole space-time in large extra dimensions
    T. Burschil
    B. Koch
    JETP Letters, 2010, 92 : 193 - 199
  • [24] Black hole shadow of a rotating polytropic black hole by the Newman–Janis algorithm without complexification
    Ernesto Contreras
    J. M. Ramirez–Velasquez
    Ángel Rincón
    Grigoris Panotopoulos
    Pedro Bargueño
    The European Physical Journal C, 2019, 79
  • [25] Influence of an anisotropic matter field on the shadow of a rotating black hole
    Badia, Javier
    Eiroa, Ernesto F.
    PHYSICAL REVIEW D, 2020, 102 (02)
  • [26] Shadow and quasinormal modes of a rotating loop quantum black hole
    Liu, Cheng
    Zhu, Tao
    Wu, Qiang
    Jusufi, Kimet
    Jamil, Mubasher
    Azreg-Aïnou, Mustapha
    Wang, Anzhong
    arXiv, 2020,
  • [27] Dynamics of null particles and shadow for general rotating black hole
    Meng, Kun
    Fan, Xi-Long
    Li, Song
    Han, Wen-Biao
    Zhang, Hongsheng
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [28] Shadow and quasinormal modes of a rotating loop quantum black hole
    Liu, Cheng
    Zhu, Tao
    Wu, Qiang
    Jusufi, Kimet
    Jamil, Mubasher
    Azreg-Ainou, Mustapha
    Wang, Anzhong
    PHYSICAL REVIEW D, 2020, 101 (08)
  • [29] Shadow of rotating Hořava-Lifshitz black hole
    Farruh Atamurotov
    Ahmadjon Abdujabbarov
    Bobomurat Ahmedov
    Astrophysics and Space Science, 2013, 348 : 179 - 188
  • [30] Dynamics of null particles and shadow for general rotating black hole
    Kun Meng
    Xi-Long Fan
    Song Li
    Wen-Biao Han
    Hongsheng Zhang
    Journal of High Energy Physics, 2023