Shadow of a renormalization group improved rotating black hole

被引:0
|
作者
Sanchez, Luis A. [1 ]
机构
[1] Univ Nacl Colombia, Dept Fis, AA 3840, Medellin, Colombia
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 10期
关键词
TELESCOPE RESULTS. I; GRAVITATIONAL COLLAPSE; PARAMETER-ESTIMATION; SINGULARITIES;
D O I
10.1140/epjc/s10052-024-13398-x
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a study on quantum gravity effects on the shadow of a rotating black hole (BH) obtained in the setting of the asymptotically safe gravity. The rotating metric, which results from a static regular one recently presented in the literature, is generated by using the generalized Newman-Janis algorithm. The novelty of the static regular metric lies in the fact that it is the outcome of an effective Lagrangian which describes dust whose spherically symmetric collapse is non-singular as a consequence of the antiscreening character of gravity at small distances. The effective Lagrangian includes a multiplicative coupling, denoted as chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}, with the Lagrangian of the collapsing fluid. The resulting exterior metric for large radii depends on a free parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} which captures the quantum gravity effects. The form of the coupling chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} and its connection with the quantum parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} are determined by the running of the Newton coupling G(k) along a renormalization group trajectory that stops at the ultraviolet non-gaussian fixed point of the asymptotic safety theory for quantum gravity. Varying both the spin parameter a star\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{\star }$$\end{document} and the quantum parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}, we explore the quantum gravity effects on several astronomical observables used to describe the morphology of the shadow cast by rotating BHs. In order to obtain constraints on the parameter xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}, we confront our results with the recent Event Horizon Telescope (EHT) observations of the shadows of the supermassive BHs M87 & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M87}<^>*$$\end{document} and Sgr A & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {A}<^>*$$\end{document}. We find that the ranges of variation of all the studied shadow observables fall entirely within the ranges determined by the EHT collaboration. We then conclude that the current astronomical data do not rule out the renormalization group improved rotating BH.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Shadow of a Renormalization Group Improved Rotating Black Hole
    Departamento de Física, Universidad Nacional de Colombia, Medellín
    A.A. 3840, Colombia
    arXiv, 1600,
  • [2] The Observational Shadow Features of a Renormalization Group Improved Black Hole Considering Spherical Accretions
    Chen, Yun-Xian
    Mou, Ping-Hui
    Li, Guo-Ping
    SYMMETRY-BASEL, 2022, 14 (10):
  • [3] Renormalization group improved black hole spacetimes
    Bonanno, A
    Reuter, M
    PHYSICAL REVIEW D, 2000, 62 (04) : 21
  • [4] Shadow of a rotating braneworld black hole
    Amarilla, Leonardo
    Eiroa, Ernesto F.
    PHYSICAL REVIEW D, 2012, 85 (06):
  • [5] Black hole shadow of a rotating scale-dependent black hole
    Contreras, Ernesto
    Rincon, Angel
    Panotopoulos, Grigoris
    Bargueno, Pedro
    Koch, Benjamin
    PHYSICAL REVIEW D, 2020, 101 (06)
  • [6] Ergosphere and shadow of a rotating regular black hole
    Ghosh, Sushant G.
    Amir, Muhammed
    Maharaj, Sunil D.
    NUCLEAR PHYSICS B, 2020, 957
  • [7] Rotating dirty black hole and its shadow
    Pantig, Reggie C.
    Rodulfo, Emmanuel T.
    CHINESE JOURNAL OF PHYSICS, 2020, 68 : 236 - 257
  • [8] Rotating charged black hole shadow in quintessence
    Singh, Balendra Pratap
    ANNALS OF PHYSICS, 2022, 441
  • [9] Possibility of identifying matter around rotating black hole with black hole shadow
    Xu, Zhaoyi
    Hou, Xian
    Wang, Jiancheng
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (10):
  • [10] Exploring the shadow of a rotating charged ModMax black hole
    Karshiboev, Khurshid
    Atamurotov, Farruh
    Abdujabbarov, Ahmadjon
    Ovgun, Ali
    Reyimberganov, Anvar
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (02)