Semantics of lattice-valued tense propositional logic system

被引:0
|
作者
Li, Wen-Jiang
Xu, Yang
机构
[1] Sch. of Elec. Eng., Southwest Jiaotong Univ., Chengdu 610031, China
[2] Dept. of Appl. Math., Southwest Jiaotong Univ., Chengdu 610031, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:691 / 695
相关论文
共 50 条
  • [41] α-MINIMAL RESOLUTION PRINCIPLE BASED ON LATTICE-VALUED PROPOSITIONAL LOGIC LP(X)
    Jia, Hairui
    Xu, Yang
    Liu, Yi
    He, Huicong
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 1729 - 1734
  • [42] α - GENERALIZED RESOLUTION PRINCIPLE BASED ON LATTICE-VALUED PROPOSITIONAL LOGIC LP(X)
    Xu, Yang
    Xu, Weitao
    Zhong, Xiaomei
    He, Xingxing
    COMPUTATIONAL INTELLIGENCE: FOUNDATIONS AND APPLICATIONS: PROCEEDINGS OF THE 9TH INTERNATIONAL FLINS CONFERENCE, 2010, 4 : 66 - 71
  • [43] Model theory and closure operators of lattice-valued propositional logic LP(X)
    Wang, XF
    Liu, PS
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 5010 - 5015
  • [44] On an algebra of lattice-valued logic
    Hansen, L
    JOURNAL OF SYMBOLIC LOGIC, 2005, 70 (01) : 282 - 318
  • [45] Agents and lattice-valued logic
    Mathematical Department, Catholic University, Brescia, Italy
    J. Donghua Univ., 2006, 6 (113-116):
  • [46] Closure operators in lattice-valued propositional logics
    Wang, XF
    Qing, M
    Xu, Y
    Qin, KY
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 1762 - 1767
  • [47] Lattice-Valued Proposition Logic(Ⅱ)
    Qin Keyun
    Xu Yang( Dept. of Appl. Mathematics
    Journal of Southwest Jiaotong University, 1994, (01) : 22 - 27
  • [48] GENERAL FORM OF α-LINEAR RESOLUTION METHOD BASED ON LATTICE-VALUED PROPOSITIONAL LOGIC SYSTEM LP(X)
    Xu, Weitao
    Zhang, Dexian
    Zhu, Hua
    Xu, Yang
    UNCERTAINTY MODELING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2012, 7 : 720 - 725
  • [49] Linguistic truth-valued lattice-valued propositional logic system lP(X) based on linguistic truth-valued lattice implication algebra
    Lai, Jiajun
    Xu, Yang
    INFORMATION SCIENCES, 2010, 180 (10) : 1990 - 2002
  • [50] Categorical study for algebras of Fitting’s lattice-valued logic and lattice-valued modal logic
    Kumar Sankar Ray
    Litan Kumar Das
    Annals of Mathematics and Artificial Intelligence, 2021, 89 : 409 - 429