Semantics of lattice-valued tense propositional logic system

被引:0
|
作者
Li, Wen-Jiang
Xu, Yang
机构
[1] Sch. of Elec. Eng., Southwest Jiaotong Univ., Chengdu 610031, China
[2] Dept. of Appl. Math., Southwest Jiaotong Univ., Chengdu 610031, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:691 / 695
相关论文
共 50 条
  • [31] Graded consequence relations of lattice-valued propositional logic LP(X)
    Wang, XF
    Meng, D
    Xu, Y
    Qin, KY
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 5004 - 5009
  • [32] Tense θ-valued Moisil propositional logic
    Chirita, C.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2010, 5 (05) : 642 - 653
  • [33] α-resolution principle based on an intermediate element lattice-valued propositional logic
    Meng, D
    Xu, Y
    PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 89 - 91
  • [34] Lattice-valued modal propositional logic based on M-lattice implication algebras
    Liu Y.
    Liu J.
    Chen S.-W.
    Xu Y.
    Journal of Shanghai Jiaotong University (Science), 2012, 17 (02) : 166 - 170
  • [35] α-ORDERED LINEAR MINIMAL RESOLUTION METHOD IN LATTICE-VALUED PROPOSITIONAL LOGIC SYSTEM LP(X)
    Jia, Hairui
    Fie, Huicong
    Xu, Yang
    Liu, Yi
    DECISION MAKING AND SOFT COMPUTING, 2014, 9 : 191 - 196
  • [36] Lattice-Valued Modal Propositional Logic Based on M-Lattice Implication Algebras
    刘熠
    刘军
    陈树伟
    徐扬
    JournalofShanghaiJiaotongUniversity(Science), 2012, 17 (02) : 166 - 170
  • [37] α-resolution principle based on lattice-valued modal propositional logic LMP(X)
    Li, WJ
    Xu, Y
    Ma, J
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XVI, PROCEEDINGS: COMPUTER SCIENCE III, 2002, : 114 - 118
  • [38] Uncertainty reasoning based on lattice-valued propositional logic L6
    Chen, Shuwei
    Xu, Yang
    Ma, Jun
    2006 IMACS: MULTICONFERENCE ON COMPUTATIONAL ENGINEERING IN SYSTEMS APPLICATIONS, VOLS 1 AND 2, 2006, : 1419 - +
  • [39] A unified algorithm for finding -IESFs in linguistic truth-valued lattice-valued propositional logic
    He, Xingxing
    Xu, Yang
    Liu, Jun
    Chen, Shuwei
    SOFT COMPUTING, 2014, 18 (11) : 2135 - 2147
  • [40] α-Automated Reasoning Method Based on Lattice-Valued Propositional Logic LP(X)
    王伟
    徐扬
    王学芳
    Journal of Southwest Jiaotong University, 2002, (01) : 98 - 111