Agents and lattice-valued logic

被引:0
|
作者
Mathematical Department, Catholic University, Brescia, Italy [1 ]
机构
来源
J. Donghua Univ. | 2006年 / 6卷 / 113-116期
关键词
Fuzzy logic;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Algebraic Study of Lattice-Valued Logic and Lattice-Valued Modal Logic
    Maruyama, Yoshihiro
    LOGIC AND ITS APPLICATIONS, 2009, 5378 : 170 - 184
  • [2] On an algebra of lattice-valued logic
    Hansen, L
    JOURNAL OF SYMBOLIC LOGIC, 2005, 70 (01) : 282 - 318
  • [3] Lattice-Valued Proposition Logic(Ⅱ)
    Qin Keyun
    Xu Yang( Dept. of Appl. Mathematics
    Journal of Southwest Jiaotong University, 1994, (01) : 22 - 27
  • [4] Categorical study for algebras of Fitting’s lattice-valued logic and lattice-valued modal logic
    Kumar Sankar Ray
    Litan Kumar Das
    Annals of Mathematics and Artificial Intelligence, 2021, 89 : 409 - 429
  • [5] Categorical study for algebras of Fitting's lattice-valued logic and lattice-valued modal logic
    Ray, Kumar Sankar
    Das, Litan Kumar
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2021, 89 (3-4) : 409 - 429
  • [6] Strong completeness of lattice-valued logic
    Mitio Takano
    Archive for Mathematical Logic, 2002, 41 : 497 - 505
  • [7] Lattice-valued logic and neural networks
    Liu, YF
    Wang, PKC
    1997 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1997, : 350 - 355
  • [8] Strong completeness of lattice-valued logic
    Takano, M
    ARCHIVE FOR MATHEMATICAL LOGIC, 2002, 41 (05) : 497 - 505
  • [9] α-PARAMODULATION FOR LATTICE-VALUED LOGIC WITH EQUALITY
    He, Xingxing
    Xu, Yang
    Liu, Jun
    Zhong, Xiaomei
    DECISION MAKING AND SOFT COMPUTING, 2014, 9 : 86 - 91
  • [10] A comparison between lattice-valued propositional logic LP(X) and gradational lattice-valued propositional logic Lvpl
    Chang, Zhiyan
    Xu, Yang
    Lai, Jiajun
    Long, Xiqing
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007,