Convergence of sparse variational inference in gaussian processes regression

被引:0
|
作者
Burt, David R. [1 ]
Rasmussen, Carl Edward [1 ]
Van Der Wilk, Mark [2 ,3 ]
机构
[1] Department of Engineering, University of Cambridge, United Kingdom
[2] Department of Computing, Imperial College London, United Kingdom
[3] Prowler.io, Cambridge, United Kingdom
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Doubly Stochastic Variational Inference for Deep Gaussian Processes
    Salimbeni, Hugh
    Deisenroth, Marc Peter
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [22] Variational Inference for Gaussian Process Modulated Poisson Processes
    Lloyd, Chris
    Gunter, Tom
    Osborne, Michael A.
    Roberts, Stephen J.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1814 - 1822
  • [23] Implicit Posterior Variational Inference for Deep Gaussian Processes
    Yu, Haibin
    Chen, Yizhou
    Dai, Zhongxiang
    Low, Bryan Kian Hsiang
    Jaillet, Patrick
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [24] Variational Inference for Gaussian Processes with Panel Count Data
    Ding, Hongyi
    Lee, Young
    Sato, Issei
    Sugiyama, Masashi
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 290 - 299
  • [25] Adaptive Sparse Bayesian Regression with Variational Inference for Parameter Estimation
    Koda, Satoru
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2016, 2016, 10029 : 263 - 273
  • [26] Approximate inference for disease mapping with sparse Gaussian processes
    Vanhatalo, Jarno
    Pietilainen, Ville
    Vehtari, Aki
    STATISTICS IN MEDICINE, 2010, 29 (15) : 1580 - 1607
  • [27] Contraction rates for sparse variational approximations in Gaussian process regression
    Nieman, Dennis
    Szabo, Botond
    van Zanten, Harry
    Journal of Machine Learning Research, 2022, 23
  • [28] Contraction rates for sparse variational approximations in Gaussian process regression
    Nieman, Dennis
    Szabo, Botond
    van Zanten, Harry
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [29] Learning spatial patterns with variational Gaussian processes: Regression
    Goncalves, Italo Gomes
    Guadagnin, Felipe
    Cordova, Diogo Peixoto
    COMPUTERS & GEOSCIENCES, 2022, 161
  • [30] Validation Based Sparse Gaussian Processes for Ordinal Regression
    Srijith, P. K.
    Shevade, Shirish
    Sundararajan, S.
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 2012, 7664 : 409 - 416