Convergence of sparse variational inference in gaussian processes regression

被引:0
|
作者
Burt, David R. [1 ]
Rasmussen, Carl Edward [1 ]
Van Der Wilk, Mark [2 ,3 ]
机构
[1] Department of Engineering, University of Cambridge, United Kingdom
[2] Department of Computing, Imperial College London, United Kingdom
[3] Prowler.io, Cambridge, United Kingdom
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Differentially Private Regression and Classification with Sparse Gaussian Processes
    Smith, Michael Thomas
    Alvarez, Mauricio A.
    Lawrence, Neil D.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [32] Differentially private regression and classification with sparse Gaussian processes
    Smith, Michael Thomas
    Álvarez, Mauricio A.
    Lawrence, Neil D.
    Journal of Machine Learning Research, 2021, 22
  • [33] Knot selection in sparse Gaussian processes with a variational objective function
    Garton, Nathaniel
    Niemi, Jarad
    Carriquiry, Alicia
    STATISTICAL ANALYSIS AND DATA MINING, 2020, 13 (04) : 324 - 336
  • [34] Amortized Variational Inference with Graph Convolutional Networks for Gaussian Processes
    Liu, Linfeng
    Liu, Li-Ping
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [35] Deep Gaussian Processes with Importance-Weighted Variational Inference
    Salimbeni, Hugh
    Dutordoir, Vincent
    Hensman, James
    Deisenroth, Marc Peter
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [36] Scaling Gaussian Processes with Derivative Information Using Variational Inference
    Padidar, Misha
    Zhu, Xinran
    Huang, Leo
    Gardner, Jacob R.
    Bindel, David
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [37] Variational zero-inflated Gaussian processes with sparse kernels
    Hegde, Pashupati
    Heinonen, Markus
    Kaski, Samuel
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 361 - 371
  • [38] Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes
    Damianou, Andreas C.
    Titsias, Michalis K.
    Lawrence, Neil D.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17 : 1 - 62
  • [39] Scalable Variational Bayesian Kernel Selection for Sparse Gaussian Process Regression
    Teng, Tong
    Chen, Jie
    Zhang, Yehong
    Low, Kian Hsiang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5997 - 6004
  • [40] Mapping radioactive environments by use of sparse Gaussian processes regression
    Kipkosgei, C. Amos
    Liu, Yong-Kuo
    Adibeli, Justina Onyinyechukwu
    Duan, Chengjie
    Ding, Peng
    Song, Juqing
    ANNALS OF NUCLEAR ENERGY, 2024, 200