Adaptive Sparse Bayesian Regression with Variational Inference for Parameter Estimation

被引:0
|
作者
Koda, Satoru [1 ]
机构
[1] Kyushu Univ, Grad Sch Math, Fukuoka, Japan
关键词
D O I
10.1007/978-3-319-49055-7_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A relevance vector machine (RVM) is a sparse Bayesian modeling tool for regression analysis. Since it can estimate complex relationships among variables and provide sparse models, it has been known as an efficient tool. On the other hand, the accuracy of RVM models strongly depends on the selection of their kernel parameters. This article presents a kernel parameter estimation method based on variational inference theories. This approach is quite adaptive, which enables RVM models to capture nonlinearity and local structure automatically. We applied the proposed method to artificial and real datasets. The results showed that the proposed method can achieve more accurate regression than other RVMs.
引用
收藏
页码:263 / 273
页数:11
相关论文
共 50 条
  • [1] ADAPTIVE VARIATIONAL SPARSE BAYESIAN ESTIMATION
    Themelis, Konstantinos E.
    Rontogiannis, Athanasios A.
    Koutroumbas, Konstantinos D.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [2] Stochastic Variational Inference for Bayesian Sparse Gaussian Process Regression
    Yu, Haibin
    Trong Nghia Hoang
    Low, Bryan Kian Hsiang
    Jaillet, Patrick
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [3] Sparse Variational Bayesian Inference for Water Pipeline Systems With Parameter Uncertainties
    Zhou, Bingpeng
    Liu, An
    Lau, Vincent K. N.
    IEEE ACCESS, 2018, 6 : 49664 - 49678
  • [4] Bayesian inference for adaptive low rank and sparse matrix estimation
    Jia, Xixi
    Feng, Xiangchu
    Wang, Weiwei
    Xu, Chen
    Zhang, Lei
    NEUROCOMPUTING, 2018, 291 : 71 - 83
  • [5] Variational inference on a Bayesian adaptive lasso Tobit quantile regression model
    Wang, Zhiqiang
    Wu, Ying
    Cheng, WeiLi
    STAT, 2023, 12 (01):
  • [6] Variational inference for Bayesian bridge regression
    Zanini C.T.P.
    Migon H.S.
    Dias R.
    Statistics and Computing, 2024, 34 (1)
  • [7] Sparse Online Variational Bayesian Regression
    Law, Kody J. H.
    Zankin, Vitaly
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (03): : 1070 - 1100
  • [8] Robust Variational Bayesian Inference for Direction-of-Arrival Estimation With Sparse Array
    Liu, Ying
    Zhang, Zongyu
    Zhou, Chengwei
    Yan, Chenggang
    Shi, Zhiguo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8591 - 8602
  • [9] Sparse Audio Inpainting with Variational Bayesian Inference
    Chantas, Giannis
    Nikolopoulos, Spiros
    Kompatsiaris, Ioannis
    2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2018,
  • [10] Practical considerations when using sparse grids with Bayesian inference for parameter estimation
    Emery, A. F.
    Johnson, K. C.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2012, 20 (05) : 591 - 608