Asymptotics for the Green's functions of a transient reflected Brownian motion in a wedge

被引:2
|
作者
Franceschi, Sandro [1 ]
Kourkova, Irina [2 ]
Petit, Maxence [2 ]
机构
[1] Inst Polytech Paris, Telecom SudParis, Lab SAMOVAR, 19 Pl Marguer Perey, F-91120 Palaiseau, France
[2] Sorbonne Univ, Lab Probabilites Stat & Modelisat, UMR 8001, 4 Pl Jussieu, F-75005 Paris, France
关键词
STATIONARY DISTRIBUTION; POSITIVE RECURRENCE; BEHAVIOR; QUEUES; MODELS;
D O I
10.1007/s11134-024-09925-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider a transient Brownian motion reflected obliquely in a two-dimensional wedge. A precise asymptotic expansion of Green's functions is found in all directions. To this end, we first determine a kernel functional equation connecting the Laplace transforms of the Green's functions. We then extend the Laplace transforms analytically and study its singularities. We obtain the asymptotics applying the saddle point method to the inverse Laplace transform on the Riemann surface generated by the kernel.
引用
收藏
页码:321 / 382
页数:62
相关论文
共 50 条
  • [41] EXACT SIMULATION OF MULTIDIMENSIONAL REFLECTED BROWNIAN MOTION
    Blanchet, Jose
    Murthy, Karthyek
    JOURNAL OF APPLIED PROBABILITY, 2018, 55 (01) : 137 - 156
  • [42] ON THE DISTRIBUTION OF MULTIDIMENSIONAL REFLECTED BROWNIAN-MOTION
    HARRISON, JM
    REIMAN, MI
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 41 (02) : 345 - 361
  • [43] On the rate of convergence to equilibrium for reflected Brownian motion
    Glynn, Peter W.
    Wang, Rob J.
    QUEUEING SYSTEMS, 2018, 89 (1-2) : 165 - 197
  • [44] REFLECTED BROWNIAN-MOTION IN A POLYHEDRAL REGION
    WILLIAMS, RJ
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (01) : 10 - 11
  • [45] On the infimum attained by the reflected fractional Brownian motion
    K. Dębicki
    K. M. Kosiński
    Extremes, 2014, 17 : 431 - 446
  • [46] DISCRETIZATION ERROR OF REFLECTED FRACTIONAL BROWNIAN MOTION
    McGlaughlin, Peter
    Chronopoulou, Alexandra
    2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 270 - 276
  • [47] Set estimation from reflected Brownian motion
    Cholaquidis, Alejandro
    Fraiman, Ricardo
    Lugosi, Gabor
    Pateiro-Lopez, Beatriz
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (05) : 1057 - 1078
  • [48] REFLECTED BROWNIAN MOTION ON SIMPLE NESTED FRACTALS
    Kaleta, Kamil
    Olszewski, Mariusz
    Pietruska-Paluba, Katarzyna
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (06)
  • [49] Arbitrage problems with reflected geometric Brownian motion
    Dean Buckner
    Kevin Dowd
    Hardy Hulley
    Finance and Stochastics, 2024, 28 : 1 - 26
  • [50] Reflected Brownian Motion in Time Dependent Domains
    Burdzy, Krzysztof
    BROWNIAN MOTION AND ITS APPLICATIONS TO MATHEMATICAL ANALYSIS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLIII - 2013, 2014, 2106 : 107 - 131