Asymptotics for the Green's functions of a transient reflected Brownian motion in a wedge

被引:2
|
作者
Franceschi, Sandro [1 ]
Kourkova, Irina [2 ]
Petit, Maxence [2 ]
机构
[1] Inst Polytech Paris, Telecom SudParis, Lab SAMOVAR, 19 Pl Marguer Perey, F-91120 Palaiseau, France
[2] Sorbonne Univ, Lab Probabilites Stat & Modelisat, UMR 8001, 4 Pl Jussieu, F-75005 Paris, France
关键词
STATIONARY DISTRIBUTION; POSITIVE RECURRENCE; BEHAVIOR; QUEUES; MODELS;
D O I
10.1007/s11134-024-09925-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider a transient Brownian motion reflected obliquely in a two-dimensional wedge. A precise asymptotic expansion of Green's functions is found in all directions. To this end, we first determine a kernel functional equation connecting the Laplace transforms of the Green's functions. We then extend the Laplace transforms analytically and study its singularities. We obtain the asymptotics applying the saddle point method to the inverse Laplace transform on the Riemann surface generated by the kernel.
引用
收藏
页码:321 / 382
页数:62
相关论文
共 50 条
  • [21] ON THE REFLECTED FRACTIONAL BROWNIAN MOTION PROCESS ON THE POSITIVE ORTHANT: ASYMPTOTICS FOR A MAXIMUM WITH APPLICATION TO QUEUEING NETWORKS
    Delgado, Rosario
    STOCHASTIC MODELS, 2010, 26 (02) : 272 - 294
  • [22] Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion
    Chaumont, L
    Doney, RA
    PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (04) : 519 - 534
  • [23] Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion
    L. Chaumont
    R. A. Doney
    Probability Theory and Related Fields, 1999, 113 : 519 - 534
  • [24] TUTTE'S INVARIANT APPROACH FOR BROWNIAN MOTION REFLECTED IN THE QUADRANT
    Franceschi, S.
    Raschel, Kilian
    ESAIM-PROBABILITY AND STATISTICS, 2017, 21 : 220 - 234
  • [25] Reflected Brownian Motion in a wedge: sum-of-exponential absorption probability at the vertex and differential properties
    Flin, Jules
    Franceschi, Sandro
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 1195 - 1214
  • [26] ASYMPTOTICS OF PARABOLIC GREEN'S FUNCTIONS ON LATTICES
    Gurevich, P.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2017, 28 (05) : 569 - 596
  • [27] Asymptotics of dynamic lattice Green's functions
    Vanel, A. L.
    Craster, R. V.
    Colquitt, D. J.
    Makwana, M.
    WAVE MOTION, 2016, 67 : 15 - 31
  • [28] Discrete approximations to reflected Brownian motion
    Burdzy, Krzysztof
    Chen, Zhen-Qing
    ANNALS OF PROBABILITY, 2008, 36 (02): : 698 - 727
  • [29] REFLECTED BROWNIAN-MOTION ON AN ORTHANT
    HARRISON, JM
    REIMAN, MI
    ANNALS OF PROBABILITY, 1981, 9 (02): : 302 - 308
  • [30] Reflected Brownian motion with singular drift
    Wang, Chen
    Yang, Saisai
    Zhang, Tusheng
    BERNOULLI, 2021, 27 (02) : 866 - 898