Asymptotics for the Green's functions of a transient reflected Brownian motion in a wedge

被引:2
|
作者
Franceschi, Sandro [1 ]
Kourkova, Irina [2 ]
Petit, Maxence [2 ]
机构
[1] Inst Polytech Paris, Telecom SudParis, Lab SAMOVAR, 19 Pl Marguer Perey, F-91120 Palaiseau, France
[2] Sorbonne Univ, Lab Probabilites Stat & Modelisat, UMR 8001, 4 Pl Jussieu, F-75005 Paris, France
关键词
STATIONARY DISTRIBUTION; POSITIVE RECURRENCE; BEHAVIOR; QUEUES; MODELS;
D O I
10.1007/s11134-024-09925-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider a transient Brownian motion reflected obliquely in a two-dimensional wedge. A precise asymptotic expansion of Green's functions is found in all directions. To this end, we first determine a kernel functional equation connecting the Laplace transforms of the Green's functions. We then extend the Laplace transforms analytically and study its singularities. We obtain the asymptotics applying the saddle point method to the inverse Laplace transform on the Riemann surface generated by the kernel.
引用
收藏
页码:321 / 382
页数:62
相关论文
共 50 条