Asymptotics for the Green's functions of a transient reflected Brownian motion in a wedge

被引:2
|
作者
Franceschi, Sandro [1 ]
Kourkova, Irina [2 ]
Petit, Maxence [2 ]
机构
[1] Inst Polytech Paris, Telecom SudParis, Lab SAMOVAR, 19 Pl Marguer Perey, F-91120 Palaiseau, France
[2] Sorbonne Univ, Lab Probabilites Stat & Modelisat, UMR 8001, 4 Pl Jussieu, F-75005 Paris, France
关键词
STATIONARY DISTRIBUTION; POSITIVE RECURRENCE; BEHAVIOR; QUEUES; MODELS;
D O I
10.1007/s11134-024-09925-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider a transient Brownian motion reflected obliquely in a two-dimensional wedge. A precise asymptotic expansion of Green's functions is found in all directions. To this end, we first determine a kernel functional equation connecting the Laplace transforms of the Green's functions. We then extend the Laplace transforms analytically and study its singularities. We obtain the asymptotics applying the saddle point method to the inverse Laplace transform on the Riemann surface generated by the kernel.
引用
收藏
页码:321 / 382
页数:62
相关论文
共 50 条
  • [1] Reflected Brownian motion with drift in a wedge
    Peter Lakner
    Ziran Liu
    Josh Reed
    Queueing Systems, 2023, 105 : 233 - 270
  • [2] Reflected Brownian motion with drift in a wedge
    Lakner, Peter
    Liu, Ziran
    Reed, Josh
    QUEUEING SYSTEMS, 2023, 105 (3-4) : 233 - 270
  • [4] REFLECTED BROWNIAN-MOTION IN A WEDGE - SEMIMARTINGALE PROPERTY
    WILLIAMS, RJ
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (02): : 161 - 176
  • [5] MEASURING THE INITIAL TRANSIENT: REFLECTED BROWNIAN MOTION
    Wang, Rob J.
    Glynn, Peter W.
    PROCEEDINGS OF THE 2014 WINTER SIMULATION CONFERENCE (WSC), 2014, : 652 - 661
  • [6] LOCAL TIME AND EXCURSIONS OF REFLECTED BROWNIAN-MOTION IN A WEDGE
    WILLIAMS, RJ
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1987, 23 (02) : 297 - 319
  • [7] On the stationary distribution of reflected Brownian motion in a wedge: differential properties
    Bousquet-Melou, Mireille
    Price, Andrew Elvey
    Franceschi, Sandro
    Hardouin, Charlotte
    Raschel, Kilian
    ELECTRONIC JOURNAL OF PROBABILITY, 2025, 30
  • [8] Integral expression for the stationary distribution of reflected Brownian motion in a wedge
    Franceschi, Sandro
    Raschel, Kilian
    BERNOULLI, 2019, 25 (4B) : 3673 - 3713
  • [9] Sojourns of fractional Brownian motion queues: transient asymptotics
    Krzysztof Dȩbicki
    Enkelejd Hashorva
    Peng Liu
    Queueing Systems, 2023, 105 : 139 - 170
  • [10] Sojourns of fractional Brownian motion queues: transient asymptotics
    Debicki, Krzysztof
    Hashorva, Enkelejd
    Liu, Peng
    QUEUEING SYSTEMS, 2023, 105 (1-2) : 139 - 170