Mapping the Topography of Spatial Gene Expression with Interpretable Deep Learning

被引:4
|
作者
Chitra, Uthsav [1 ]
Arnold, Brian J. [1 ,2 ]
Sarkar, Hirak [1 ,3 ]
Ma, Cong [1 ]
Lopez-Darwin, Sereno [4 ]
Sanno, Kohei [1 ]
Raphael, Benjamin J. [1 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[2] Princeton Univ, Ctr Stat & Machine Learning, Princeton, NJ 08544 USA
[3] Princeton Univ, Ludwig Canc Inst, Princeton Branch, Princeton, NJ 08544 USA
[4] Princeton Univ, Lewis Sigler Inst, Princeton, NJ 08544 USA
关键词
Spatial transcriptomics; gene expression topography; expression gradients; deep learning;
D O I
10.1007/978-1-0716-3989-4_33
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of this data complicates the analysis of spatial gene expression patterns. We address this issue by deriving a topographic map of a tissue slice-analogous to a map of elevation in a landscape-using a novel quantity called the isodepth. Contours of constant isodepth enclose spatial domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in gene expression. We develop GASTON, an unsupervised and interpretable deep learning algorithm that simultaneously learns the isodepth, spatial gene expression gradients, and piecewise linear functions of the isodepth. GASTON models both continuous gradients and discontinuous spatial variation in the expression of individual genes. We show that GASTON accurately identifies spatial domains and marker genes in multiple SRT datasets.
引用
收藏
页码:368 / 371
页数:4
相关论文
共 50 条
  • [41] Spatial Mapping of Myeloma Bone Marrow Microenvironment Using a Deep Learning Approach
    Lecat, Catherine S. Y.
    Hagos, Yeman Brhane
    Patel, Dominic
    Mikolajczak, Anna
    Tran, Thien-An
    Lee, Lydia Sarah Hui
    Rodriguez-Justo, Manuel
    Yuan, Yinyin
    Yong, Kwee
    BLOOD, 2023, 142
  • [42] Learning biologically-interpretable latent representations for gene expression data Pathway Activity Score Learning Algorithm
    Karagiannaki, Ioulia
    Gourlia, Krystallia
    Lagani, Vincenzo
    Pantazis, Yannis
    Tsamardinos, Ioannis
    MACHINE LEARNING, 2023, 112 (11) : 4257 - 4287
  • [43] Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond
    Xuhong Li
    Haoyi Xiong
    Xingjian Li
    Xuanyu Wu
    Xiao Zhang
    Ji Liu
    Jiang Bian
    Dejing Dou
    Knowledge and Information Systems, 2022, 64 : 3197 - 3234
  • [44] Towards Interpretable Deep Metric Learning with Structural Matching
    Zhao, Wenliang
    Rao, Yongming
    Wang, Ziyi
    Lu, Jiwen
    Zhou, Jie
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9867 - 9876
  • [45] Research on Interpretable Recommendation Algorithms Based on Deep Learning
    Wei, Q. F.
    Yang, K.
    ENGINEERING LETTERS, 2024, 32 (03) : 560 - 568
  • [46] Deep Natural Language Feature Learning for Interpretable Prediction
    Urrutia, Felipe
    Buc, Cristian
    Barriere, Valentin
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 3736 - 3763
  • [47] This Looks Like That: Deep Learning for Interpretable Image Recognition
    Chen, Chaofan
    Li, Oscar
    Tao, Chaofan
    Barnett, Alina Jade
    Su, Jonathan
    Rudin, Cynthia
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [48] Interpretable Deep Learning based Risk Evaluation Approach
    Cuong Do
    Wang, Cory
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN DEFENSE APPLICATIONS II, 2020, 11543
  • [49] Interpretable deep learning in single-cell omics
    Wagle, Manoj M.
    Long, Siqu
    Chen, Carissa
    Liu, Chunlei
    Yang, Pengyi
    BIOINFORMATICS, 2024, 40 (06)
  • [50] Generalizable and Interpretable Deep Learning for Network Congestion Prediction
    Poularakis, Konstantinos
    Qin, Qiaofeng
    Le, Franck
    Kompella, Sastry
    Tassiulas, Leandros
    2021 IEEE 29TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP 2021), 2021,