Mapping the Topography of Spatial Gene Expression with Interpretable Deep Learning

被引:4
|
作者
Chitra, Uthsav [1 ]
Arnold, Brian J. [1 ,2 ]
Sarkar, Hirak [1 ,3 ]
Ma, Cong [1 ]
Lopez-Darwin, Sereno [4 ]
Sanno, Kohei [1 ]
Raphael, Benjamin J. [1 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[2] Princeton Univ, Ctr Stat & Machine Learning, Princeton, NJ 08544 USA
[3] Princeton Univ, Ludwig Canc Inst, Princeton Branch, Princeton, NJ 08544 USA
[4] Princeton Univ, Lewis Sigler Inst, Princeton, NJ 08544 USA
关键词
Spatial transcriptomics; gene expression topography; expression gradients; deep learning;
D O I
10.1007/978-1-0716-3989-4_33
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of this data complicates the analysis of spatial gene expression patterns. We address this issue by deriving a topographic map of a tissue slice-analogous to a map of elevation in a landscape-using a novel quantity called the isodepth. Contours of constant isodepth enclose spatial domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in gene expression. We develop GASTON, an unsupervised and interpretable deep learning algorithm that simultaneously learns the isodepth, spatial gene expression gradients, and piecewise linear functions of the isodepth. GASTON models both continuous gradients and discontinuous spatial variation in the expression of individual genes. We show that GASTON accurately identifies spatial domains and marker genes in multiple SRT datasets.
引用
收藏
页码:368 / 371
页数:4
相关论文
共 50 条
  • [21] Geospatial urban heat mapping with interpretable machine learning and deep learning: a case study in Hue City, Vietnam
    Hoang, Nhat-Duc
    Pham, Phu Anh Huy
    Huynh, Thanh Canh
    Cao, Minh-Tu
    Bui, Dieu-Tien
    EARTH SCIENCE INFORMATICS, 2025, 18 (01)
  • [22] Deciphering 3'UTR Mediated Gene Regulation Using Interpretable Deep Representation Learning
    Yang, Yuning
    Li, Gen
    Pang, Kuan
    Cao, Wuxinhao
    Li, Xiangtao
    Zhang, Zhaolei
    ADVANCED SCIENCE, 2024, 11 (39)
  • [23] EdgeScaping: Mapping the spatial distribution of pairwise gene expression intensities
    Husain, Benafsh
    Feltus, F. Alex
    PLOS ONE, 2019, 14 (08):
  • [24] Spatial mapping of ectonucleotidase gene expression in the murine urinary bladder
    Branco, Mafalda S. L. Aresta
    Perrino, Brian A.
    Mutafova-Yambolieva, Violeta N.
    FRONTIERS IN PHYSIOLOGY, 2023, 14
  • [25] Deep Staging: An Interpretable Deep Learning Framework for Disease Staging
    Yao, Liuyi
    Yao, Zijun
    Hu, Jianying
    Gao, Jing
    Sun, Zhaonan
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2021), 2021, : 130 - 137
  • [26] Interpretable Deep Learning for Marble Tiles Sorting
    Ouzounis, Athanasios G.
    Sidiropoulos, George K.
    Papakostas, George A.
    Sarafis, Ilias T.
    Stamkos, Andreas
    Solakis, George
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON DEEP LEARNING THEORY AND APPLICATIONS (DELTA), 2021, : 101 - 108
  • [27] Interpretable Deep Learning for Surgical Tool Management
    Rodrigues, Mark
    Mayo, Michael
    Patros, Panos
    INTERPRETABILITY OF MACHINE INTELLIGENCE IN MEDICAL IMAGE COMPUTING, AND TOPOLOGICAL DATA ANALYSIS AND ITS APPLICATIONS FOR MEDICAL DATA, 2021, 12929 : 3 - 12
  • [28] Towards an interpretable deep learning model of cancer
    Nilsson, Avlant
    Meimetis, Nikolaos
    Lauffenburger, Douglas A.
    NPJ PRECISION ONCOLOGY, 2025, 9 (01)
  • [29] Interpretable Deep Learning for Monitoring Combustion Instability
    Gangopadhyay, Tryambak
    Tan, Sin Yong
    LoCurto, Anthony
    Michael, James B.
    Sarkar, Soumik
    IFAC PAPERSONLINE, 2020, 53 (02): : 832 - 837
  • [30] Spatial modeling of radon potential mapping using deep learning algorithms
    Panahi, Mahdi
    Yariyan, Peyman
    Rezaie, Fatemeh
    Kim, Sung Won
    Sharifi, Alireza
    Alesheikh, Ali Asghar
    Lee, Jongchun
    Lee, Jungsub
    Kim, Seonhong
    Yoo, Juhee
    Lee, Saro
    GEOCARTO INTERNATIONAL, 2022, 37 (25) : 9560 - 9582