Mapping the Topography of Spatial Gene Expression with Interpretable Deep Learning

被引:4
|
作者
Chitra, Uthsav [1 ]
Arnold, Brian J. [1 ,2 ]
Sarkar, Hirak [1 ,3 ]
Ma, Cong [1 ]
Lopez-Darwin, Sereno [4 ]
Sanno, Kohei [1 ]
Raphael, Benjamin J. [1 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[2] Princeton Univ, Ctr Stat & Machine Learning, Princeton, NJ 08544 USA
[3] Princeton Univ, Ludwig Canc Inst, Princeton Branch, Princeton, NJ 08544 USA
[4] Princeton Univ, Lewis Sigler Inst, Princeton, NJ 08544 USA
关键词
Spatial transcriptomics; gene expression topography; expression gradients; deep learning;
D O I
10.1007/978-1-0716-3989-4_33
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of this data complicates the analysis of spatial gene expression patterns. We address this issue by deriving a topographic map of a tissue slice-analogous to a map of elevation in a landscape-using a novel quantity called the isodepth. Contours of constant isodepth enclose spatial domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in gene expression. We develop GASTON, an unsupervised and interpretable deep learning algorithm that simultaneously learns the isodepth, spatial gene expression gradients, and piecewise linear functions of the isodepth. GASTON models both continuous gradients and discontinuous spatial variation in the expression of individual genes. We show that GASTON accurately identifies spatial domains and marker genes in multiple SRT datasets.
引用
收藏
页码:368 / 371
页数:4
相关论文
共 50 条
  • [31] An interpretable ensemble method for deep representation learning
    Jiang, Kai
    Xiong, Zheli
    Yang, Qichong
    Chen, Jianpeng
    Chen, Gang
    ENGINEERING REPORTS, 2024, 6 (03)
  • [32] LocalGLMnet: interpretable deep learning for tabular data
    Richman, Ronald
    Wuethrich, Mario, V
    SCANDINAVIAN ACTUARIAL JOURNAL, 2023, 2023 (01) : 71 - 95
  • [33] Interpretable Deep Learning for Probabilistic MJO Prediction
    Delaunay, Antoine
    Christensen, Hannah M.
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (16)
  • [34] Interpretable Deep Learning Method Combining Temporal Backscattering Coefficients and Interferometric Coherence for Rice Area Mapping
    Ge, Ji
    Zhang, Hong
    Xu, Lu
    Sun, Chun-Ling
    Wang, Chao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [35] Learning biologically-interpretable latent representations for gene expression dataPathway Activity Score Learning Algorithm
    Ioulia Karagiannaki
    Krystallia Gourlia
    Vincenzo Lagani
    Yannis Pantazis
    Ioannis Tsamardinos
    Machine Learning, 2023, 112 : 4257 - 4287
  • [36] Hippocampal gene expression profiling in spatial discrimination learning
    Robles, Y
    Vivas-Mejía, PE
    Ortiz-Zuazaga, HG
    Félix, J
    Ramos, X
    de Ortiz, SP
    NEUROBIOLOGY OF LEARNING AND MEMORY, 2003, 80 (01) : 80 - 95
  • [37] MAPPING BRAIN IMMEDIATE EARLY GENE EXPRESSION DURING PERFORMANCE AND SPATIAL LEARNING IN THE MORRIS WATER MAZE TASK
    Barry, D.
    Commins, S.
    IRISH JOURNAL OF MEDICAL SCIENCE, 2011, 180 : 35 - 35
  • [38] Deep learning decodes the principles of differential gene expression
    Tasaki, Shinya
    Gaiteri, Chris
    Mostafavi, Sara
    Wang, Yanling
    NATURE MACHINE INTELLIGENCE, 2020, 2 (07) : 376 - +
  • [39] Deep learning decodes the principles of differential gene expression
    Shinya Tasaki
    Chris Gaiteri
    Sara Mostafavi
    Yanling Wang
    Nature Machine Intelligence, 2020, 2 : 376 - 386
  • [40] Spatial mapping of land susceptibility to dust emissions using optimization of attentive Interpretable Tabular Learning (TabNet) model
    Razavi-Termeh, Seyed Vahid
    Sadeghi-Niaraki, Abolghasem
    Sorooshian, Armin
    Abuhmed, Tamer
    Choi, Soo-Mi
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 358