Mapping the Topography of Spatial Gene Expression with Interpretable Deep Learning

被引:4
|
作者
Chitra, Uthsav [1 ]
Arnold, Brian J. [1 ,2 ]
Sarkar, Hirak [1 ,3 ]
Ma, Cong [1 ]
Lopez-Darwin, Sereno [4 ]
Sanno, Kohei [1 ]
Raphael, Benjamin J. [1 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[2] Princeton Univ, Ctr Stat & Machine Learning, Princeton, NJ 08544 USA
[3] Princeton Univ, Ludwig Canc Inst, Princeton Branch, Princeton, NJ 08544 USA
[4] Princeton Univ, Lewis Sigler Inst, Princeton, NJ 08544 USA
关键词
Spatial transcriptomics; gene expression topography; expression gradients; deep learning;
D O I
10.1007/978-1-0716-3989-4_33
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of this data complicates the analysis of spatial gene expression patterns. We address this issue by deriving a topographic map of a tissue slice-analogous to a map of elevation in a landscape-using a novel quantity called the isodepth. Contours of constant isodepth enclose spatial domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in gene expression. We develop GASTON, an unsupervised and interpretable deep learning algorithm that simultaneously learns the isodepth, spatial gene expression gradients, and piecewise linear functions of the isodepth. GASTON models both continuous gradients and discontinuous spatial variation in the expression of individual genes. We show that GASTON accurately identifies spatial domains and marker genes in multiple SRT datasets.
引用
收藏
页码:368 / 371
页数:4
相关论文
共 50 条
  • [1] Mapping the topography of spatial gene expression with interpretable deep learning
    Chitra, Uthsav
    Arnold, Brian J.
    Sarkar, Hirak
    Sanno, Kohei
    Ma, Cong
    Lopez-Darwin, Sereno
    Raphael, Benjamin J.
    NATURE METHODS, 2025, 22 (02) : 298 - 309
  • [2] Interpretable generative deep learning: an illustration with single cell gene expression data
    Treppner, Martin
    Binder, Harald
    Hess, Moritz
    HUMAN GENETICS, 2022, 141 (09) : 1481 - 1498
  • [3] Interpretable generative deep learning: an illustration with single cell gene expression data
    Martin Treppner
    Harald Binder
    Moritz Hess
    Human Genetics, 2022, 141 : 1481 - 1498
  • [4] Interpretable Deep Learning for Spatial Analysis of Severe Hailstorms
    Gagne, David John, II
    Haupt, Sue Ellen
    Nychka, Douglas W.
    Thompson, Gregory
    MONTHLY WEATHER REVIEW, 2019, 147 (08) : 2827 - 2845
  • [5] Mapping the glycosyltransferase fold landscape using interpretable deep learning
    Taujale, Rahil
    Zhou, Zhongliang
    Yeung, Wayland
    Moremen, Kelley W.
    Li, Sheng
    Kannan, Natarajan
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [6] Mapping the glycosyltransferase fold landscape using interpretable deep learning
    Rahil Taujale
    Zhongliang Zhou
    Wayland Yeung
    Kelley W. Moremen
    Sheng Li
    Natarajan Kannan
    Nature Communications, 12
  • [7] Mapping Gene Expression in the Spatial Dimension
    Chen, Yingwen
    Qian, Weizhou
    Li Lin
    Cai, Linfeng
    Yin, Kun
    Jiang, Shaowei
    Song, Jia
    Han, Ray P. S.
    Yang, Chaoyong
    SMALL METHODS, 2021, 5 (11)
  • [8] Uncertainty-Aware Interpretable Deep Learning for Slum Mapping and Monitoring
    Fisher, Thomas
    Gibson, Harry
    Liu, Yunzhe
    Abdar, Moloud
    Posa, Marius
    Salimi-Khorshidi, Gholamreza
    Hassaine, Abdelaali
    Cai, Yutong
    Rahimi, Kazem
    Mamouei, Mohammad
    REMOTE SENSING, 2022, 14 (13)
  • [9] Predicting gene regulatory interactions based on spatial gene expression data and deep learning
    Yang, Yang
    Fang, Qingwei
    Shen, Hong-Bin
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (09)
  • [10] Transformer for Gene Expression Modeling (T-GEM): An Interpretable Deep Learning Model for Gene Expression-Based Phenotype Predictions
    Zhang, Ting-He
    Hasib, Md Musaddaqul
    Chiu, Yu-Chiao
    Han, Zhi-Feng
    Jin, Yu-Fang
    Flores, Mario
    Chen, Yidong
    Huang, Yufei
    CANCERS, 2022, 14 (19)