Fabric Defect Detection Based on Improved Lightweight YOLOv8n

被引:0
|
作者
Ma, Shuangbao [1 ,2 ]
Liu, Yuna [1 ,2 ]
Zhang, Yapeng [1 ,2 ]
机构
[1] Wuhan Text Univ, Hubei Key Lab Digital Text Equipment, Wuhan 430073, Peoples R China
[2] Wuhan Text Univ, Sch Mech Engn & Automat, Wuhan 430073, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 17期
基金
中国国家自然科学基金;
关键词
fabric defects; YOLOv8; GhostNet; attention mechanism; lightweight; object detection;
D O I
10.3390/app14178000
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In response to the challenges posed by complex background textures and limited hardware resources in fabric defect detection, this study proposes a lightweight fabric defect detection algorithm based on an improved GSL-YOLOv8n model. Firstly, to reduce the parameter count and complexity of the YOLOv8n network, the GhostNet concept is used to construct the C2fGhost module, replacing the conventional convolution layers in the YOLOv8n structure with Ghost convolutions. Secondly, the SimAM parameter-free attention mechanism is embedded at the end of the backbone network to eliminate redundant background, enhance semantic information for small targets, and improve the network's feature extraction capability. Lastly, a lightweight shared convolution detection head is designed, employing the scale layer to adjust features, ensuring the lightweight nature of the model while minimizing precision loss. Compared to the original YOLOv8n model, the improved GSL-YOLOv8n algorithm increases the mAP@0.5 by 0.60% to 98.29% and reduces model size, computational load, and parameter count by 66.7%, 58.0%, and 67.4%, respectively, meeting the application requirements for fabric defect detection in textile industry production.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] YOLO-SDL: a lightweight wheat grain detection technology based on an improved YOLOv8n model
    Qiu, Zhaomei
    Wang, Fei
    Wang, Weili
    Li, Tingting
    Jin, Xin
    Qing, Shunhao
    Shi, Yi
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [32] Detection algorithm of aircraft skin defects based on improved YOLOv8n
    Wang, Hao
    Fu, Lanxue
    Wang, Liwen
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (04) : 3877 - 3891
  • [33] Chili Pepper Object Detection Method Based on Improved YOLOv8n
    Ma, Na
    Wu, Yulong
    Bo, Yifan
    Yan, Hongwen
    PLANTS-BASEL, 2024, 13 (17):
  • [34] Improved Peanut Quality Detection Method of YOLOv8n
    Huang, Yinglai
    Niu, Dawei
    Hou, Chang
    Yang, Liusong
    Computer Engineering and Applications, 2024, 60 (23) : 257 - 267
  • [35] Improved Road Object Detection Algorithm for YOLOv8n
    Gao, Deyong
    Chen, Taida
    Miao, Lan
    Computer Engineering and Applications, 2024, 60 (16) : 186 - 197
  • [36] Improved YOLOv8n object detection of fragrant pears
    Tan H.
    Ma W.
    Tian Y.
    Zhang Q.
    Li M.
    Li M.
    Yang X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (11): : 178 - 185
  • [37] Detection algorithm of aircraft skin defects based on improved YOLOv8n
    Hao Wang
    Lanxue Fu
    Liwen Wang
    Signal, Image and Video Processing, 2024, 18 : 3877 - 3891
  • [38] Improved Model for Table-Line Detection Based on YOLOv8n
    Wei, Chao
    Qian, Chunyu
    Huang, Qipeng
    Du, Linxuan
    Yang, Zhe
    Computer Engineering and Applications, 2025, 61 (02) : 112 - 123
  • [39] DSW-YOLOv8n: A New Underwater Target Detection Algorithm Based on Improved YOLOv8n
    Liu, Qiang
    Huang, Wei
    Duan, Xiaoqiu
    Wei, Jianghao
    Hu, Tao
    Yu, Jie
    Huang, Jiahuan
    ELECTRONICS, 2023, 12 (18)
  • [40] Road target detection in harsh environments based on improved YOLOv8n
    Xu, Minjun
    Sun, Jiayu
    Zhang, Junpeng
    Yan, Mengxue
    Cao, Wen
    Hou, Alin
    Journal of Electronic Imaging, 2024, 33 (05)