Fabric Defect Detection Based on Improved Lightweight YOLOv8n

被引:0
|
作者
Ma, Shuangbao [1 ,2 ]
Liu, Yuna [1 ,2 ]
Zhang, Yapeng [1 ,2 ]
机构
[1] Wuhan Text Univ, Hubei Key Lab Digital Text Equipment, Wuhan 430073, Peoples R China
[2] Wuhan Text Univ, Sch Mech Engn & Automat, Wuhan 430073, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 17期
基金
中国国家自然科学基金;
关键词
fabric defects; YOLOv8; GhostNet; attention mechanism; lightweight; object detection;
D O I
10.3390/app14178000
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In response to the challenges posed by complex background textures and limited hardware resources in fabric defect detection, this study proposes a lightweight fabric defect detection algorithm based on an improved GSL-YOLOv8n model. Firstly, to reduce the parameter count and complexity of the YOLOv8n network, the GhostNet concept is used to construct the C2fGhost module, replacing the conventional convolution layers in the YOLOv8n structure with Ghost convolutions. Secondly, the SimAM parameter-free attention mechanism is embedded at the end of the backbone network to eliminate redundant background, enhance semantic information for small targets, and improve the network's feature extraction capability. Lastly, a lightweight shared convolution detection head is designed, employing the scale layer to adjust features, ensuring the lightweight nature of the model while minimizing precision loss. Compared to the original YOLOv8n model, the improved GSL-YOLOv8n algorithm increases the mAP@0.5 by 0.60% to 98.29% and reduces model size, computational load, and parameter count by 66.7%, 58.0%, and 67.4%, respectively, meeting the application requirements for fabric defect detection in textile industry production.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Infrared image detection of defects in lightweight solar panels based on improved MSRCR and YOLOv8n
    Hong, Yan
    Pan, Ruixian
    Su, Jingming
    Li, Mushi
    INFRARED PHYSICS & TECHNOLOGY, 2024, 141
  • [22] Lightweight coal mine conveyor belt foreign object detection based on improved Yolov8n
    Jierui Ling
    Zhibo Fu
    Xinpeng Yuan
    Scientific Reports, 15 (1)
  • [23] Lightweight Sewer Pipe Crack Detection Method Based on Amphibious Robot and Improved YOLOv8n
    Lv, Zhenming
    Dong, Shaojiang
    He, Jingyao
    Hu, Bo
    Liu, Qingyi
    Wang, Honghang
    SENSORS, 2024, 24 (18)
  • [24] Lightweight Algorithm for Rail Fastener Status Detection Based on YOLOv8n
    Zhang, Xingsheng
    Shen, Benlan
    Li, Jincheng
    Ruan, Jiuhong
    ELECTRONICS, 2024, 13 (17)
  • [25] TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements
    Fang, Wenhui
    Chen, Weizhen
    SENSORS, 2025, 25 (02)
  • [26] Research on O-Ring Surface Defect Detection Algorithm Based on Improved YOLOv8n
    Li, Qi
    Shi, Yan
    Fan, Tao
    Computer Engineering and Applications, 2024, 60 (18) : 126 - 135
  • [27] Traffic Sign Detection Algorithm Based on Improved YOLOv8n
    Peng, Jun
    Mou, Biao
    Jin, Shangzhu
    Lu, Yiyi
    Li, Chenxi
    Chen, Wei
    Jiang, Aiping
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [28] Improved Road Damage Detection Algorithm Based on YOLOv8n
    Li, Xudong
    Zhang, Yujun
    IAENG International Journal of Computer Science, 2024, 51 (11) : 1720 - 1730
  • [29] Fabric defect detection algorithm based on improved YOLOv8
    Chen, Chang
    Zhou, Qihong
    Li, Shujia
    Luo, Dong
    Tan, Gaochao
    TEXTILE RESEARCH JOURNAL, 2025, 95 (3-4) : 235 - 251
  • [30] Lightweight and Efficient Tiny-Object Detection Based on Improved YOLOv8n for UAV Aerial Images
    Yue, Min
    Zhang, Liqiang
    Huang, Juan
    Zhang, Haifeng
    DRONES, 2024, 8 (07)