DSW-YOLOv8n: A New Underwater Target Detection Algorithm Based on Improved YOLOv8n

被引:16
|
作者
Liu, Qiang [1 ]
Huang, Wei [1 ,2 ]
Duan, Xiaoqiu [1 ]
Wei, Jianghao [1 ]
Hu, Tao [1 ]
Yu, Jie [1 ]
Huang, Jiahuan [1 ]
机构
[1] Wuhan Inst Technol, Sch Comp Sci & Engn, Wuhan 430205, Peoples R China
[2] Wuhan Inst Technol, Hubei Prov Key Lab Intelligent Robots, Wuhan 430205, Peoples R China
关键词
underwater target detection; deformable convnets v2; SimAm; Wise-IoU;
D O I
10.3390/electronics12183892
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Underwater target detection is widely used in various applications such as underwater search and rescue, underwater environment monitoring, and marine resource surveying. However, the complex underwater environment, including factors such as light changes and background noise, poses a significant challenge to target detection. We propose an improved underwater target detection algorithm based on YOLOv8n to overcome these problems. Our algorithm focuses on three aspects. Firstly, we replace the original C2f module with Deformable Convnets v2 to enhance the adaptive ability of the target region in the convolution check feature map and extract the target region's features more accurately. Secondly, we introduce SimAm, a non-parametric attention mechanism, which can deduce and assign three-dimensional attention weights without adding network parameters. Lastly, we optimize the loss function by replacing the CIoU loss function with the Wise-IoU loss function. We named our new algorithm DSW-YOLOv8n, which is an acronym of Deformable Convnets v2, SimAm, and Wise-IoU of the improved YOLOv8n(DSW-YOLOv8n). To conduct our experiments, we created our own dataset of underwater target detection for experimentation. Meanwhile, we also utilized the Pascal VOC dataset to evaluate our approach. The mAP@0.5 and mAP@0.5:0.95 of the original YOLOv8n algorithm on underwater target detection were 88.6% and 51.8%, respectively, and the DSW-YOLOv8n algorithm mAP@0.5 and mAP@0.5:0.95 can reach 91.8% and 55.9%. The original YOLOv8n algorithm was 62.2% and 45.9% mAP@0.5 and mAP@0.5:0.95 on the Pascal VOC dataset, respectively. The DSW-YOLOv8n algorithm mAP@0.5 and mAP@0.5:0.95 were 65.7% and 48.3%, respectively. The number of parameters of the model is reduced by about 6%. The above experimental results prove the effectiveness of our method.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Lightweight Underwater Target Detection Algorithm Based on Improved YOLOv8n
    Xie, Guobo
    Liang, Lihui
    Lin, Zhiyi
    Lin, Songze
    Su, Qing
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (24)
  • [2] Traffic Sign Detection Algorithm Based on Improved YOLOv8n
    Peng, Jun
    Mou, Biao
    Jin, Shangzhu
    Lu, Yiyi
    Li, Chenxi
    Chen, Wei
    Jiang, Aiping
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [3] Improved Road Damage Detection Algorithm Based on YOLOv8n
    Li, Xudong
    Zhang, Yujun
    IAENG International Journal of Computer Science, 2024, 51 (11) : 1720 - 1730
  • [4] Improved Road Object Detection Algorithm for YOLOv8n
    Gao, Deyong
    Chen, Taida
    Miao, Lan
    Computer Engineering and Applications, 2024, 60 (16) : 186 - 197
  • [5] YOLOv8-PD: an improved road damage detection algorithm based on YOLOv8n model
    Zeng, Jiayi
    Zhong, Han
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [6] Road target detection in harsh environments based on improved YOLOv8n
    Xu, Minjun
    Sun, Jiayu
    Zhang, Junpeng
    Yan, Mengxue
    Cao, Wen
    Hou, Alin
    Journal of Electronic Imaging, 2024, 33 (05)
  • [7] Small Target Detection Algorithm for Aerial Images Based on YOLOv8n
    Qi, Xiangming
    Yan, Pingping
    Jiang, Liang
    Computer Engineering and Applications, 2024, 60 (24) : 200 - 210
  • [8] Detection algorithm of aircraft skin defects based on improved YOLOv8n
    Wang, Hao
    Fu, Lanxue
    Wang, Liwen
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (04) : 3877 - 3891
  • [9] Detection algorithm of aircraft skin defects based on improved YOLOv8n
    Hao Wang
    Lanxue Fu
    Liwen Wang
    Signal, Image and Video Processing, 2024, 18 : 3877 - 3891
  • [10] Research on Bubble Detection Based on Improved YOLOv8n
    Chen, Tingting
    Zeng, Qingzhu
    IEEE ACCESS, 2024, 12 : 9659 - 9668