MIMA: Multi-Feature Interaction Meta-Path Aggregation Heterogeneous Graph Neural Network for Recommendations

被引:0
|
作者
Li, Yang [1 ]
Yan, Shichao [1 ]
Zhao, Fangtao [1 ]
Jiang, Yi [1 ]
Chen, Shuai [1 ]
Wang, Lei [2 ]
Ma, Li [1 ]
机构
[1] North China Univ Technol, Coll Comp Sci & Technol, Beijing 100144, Peoples R China
[2] Henan Prov Bur Stat, Data Proc Ctr, Zhengzhou 450016, Peoples R China
基金
国家重点研发计划; 北京市自然科学基金;
关键词
heterogeneous graph; multi-head attention; multi-feature interaction; meta-path aggregation; heterogeneous graph neural network;
D O I
10.3390/fi16080270
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Meta-path-based heterogeneous graph neural networks have received widespread attention for better mining the similarities between heterogeneous nodes and for discovering new recommendation rules. Most existing models depend solely on node IDs for learning node embeddings, failing to leverage attribute information fully and to clarify the reasons behind a user's interest in specific items. A heterogeneous graph neural network for recommendation named MIMA (multi-feature interaction meta-path aggregation) is proposed to address these issues. Firstly, heterogeneous graphs consisting of user nodes, item nodes, and their feature nodes are constructed, and the meta-path containing users, items, and their attribute information is used to capture the correlations among different types of nodes. Secondly, MIMA integrates attention-based feature interaction and meta-path information aggregation to uncover structural and semantic information. Then, the constructed meta-path information is subjected to neighborhood aggregation through graph convolution to acquire the correlations between different types of nodes and to further facilitate high-order feature fusion. Furthermore, user and item embedding vector representations are obtained through multiple iterations. Finally, the effectiveness and interpretability of the proposed approach are validated on three publicly available datasets in terms of NDCG, precision, and recall and are compared to all baselines.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Meta-path automatically extracted from heterogeneous information network for recommendation
    Zhang, Yihao
    Liao, Weiwen
    Wang, Yulin
    Zhu, Junlin
    Chen, Ruizhen
    Zhang, Yunjia
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2024, 27 (03):
  • [42] DDI Prediction With Heterogeneous Information Network - Meta-Path Based Approach
    Tanvir, Farhan
    Saifuddin, Khaled Mohammed
    Islam, Muhammad Ifte Khairul
    Akbas, Esra
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (05) : 1168 - 1179
  • [43] Dynamic Heterogeneous Information Network Embedding With Meta-Path Based Proximity
    Wang, Xiao
    Lu, Yuanfu
    Shi, Chuan
    Wang, Ruijia
    Cui, Peng
    Mou, Shuai
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (03) : 1117 - 1132
  • [44] Heterogeneous graph embedding by aggregating meta-path and meta-structure through attention mechanism
    Mei, Guangxu
    Pan, Li
    Liu, Shijun
    NEUROCOMPUTING, 2022, 468 : 276 - 285
  • [45] Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification
    Ding, Yao
    Zhang, Zhili
    Zhao, Xiaofeng
    Hong, Danfeng
    Cai, Wei
    Yu, Chengguo
    Yang, Nengjun
    Cai, Weiwei
    NEUROCOMPUTING, 2022, 501 : 246 - 257
  • [46] Meta-path-based heterogeneous graph neural networks in academic network
    Xingxing Liang
    Yang Ma
    Guangquan Cheng
    Changjun Fan
    Yuling Yang
    Zhong Liu
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 1553 - 1569
  • [47] Meta-path-based heterogeneous graph neural networks in academic network
    Liang, Xingxing
    Ma, Yang
    Cheng, Guangquan
    Fan, Changjun
    Yang, Yuling
    Liu, Zhong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (06) : 1553 - 1569
  • [48] GoVec: Gene Ontology Representation Learning Using Weighted Heterogeneous Graph and Meta-Path
    Nourani, Esmaeil
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (12) : 1196 - 1207
  • [49] Heterogeneous Graph Contrastive Learning With Meta-Path Contexts and Adaptively Weighted Negative Samples
    Yu, Jianxiang
    Ge, Qingqing
    Li, Xiang
    Zhou, Aoying
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) : 5181 - 5193
  • [50] Cross-modal feature symbiosis for personalized meta-path generation in heterogeneous networks
    Wu, Xiaotong
    Qiu, Liqing
    Zhao, Weidong
    NEUROCOMPUTING, 2025, 633