MIMA: Multi-Feature Interaction Meta-Path Aggregation Heterogeneous Graph Neural Network for Recommendations

被引:0
|
作者
Li, Yang [1 ]
Yan, Shichao [1 ]
Zhao, Fangtao [1 ]
Jiang, Yi [1 ]
Chen, Shuai [1 ]
Wang, Lei [2 ]
Ma, Li [1 ]
机构
[1] North China Univ Technol, Coll Comp Sci & Technol, Beijing 100144, Peoples R China
[2] Henan Prov Bur Stat, Data Proc Ctr, Zhengzhou 450016, Peoples R China
基金
国家重点研发计划; 北京市自然科学基金;
关键词
heterogeneous graph; multi-head attention; multi-feature interaction; meta-path aggregation; heterogeneous graph neural network;
D O I
10.3390/fi16080270
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Meta-path-based heterogeneous graph neural networks have received widespread attention for better mining the similarities between heterogeneous nodes and for discovering new recommendation rules. Most existing models depend solely on node IDs for learning node embeddings, failing to leverage attribute information fully and to clarify the reasons behind a user's interest in specific items. A heterogeneous graph neural network for recommendation named MIMA (multi-feature interaction meta-path aggregation) is proposed to address these issues. Firstly, heterogeneous graphs consisting of user nodes, item nodes, and their feature nodes are constructed, and the meta-path containing users, items, and their attribute information is used to capture the correlations among different types of nodes. Secondly, MIMA integrates attention-based feature interaction and meta-path information aggregation to uncover structural and semantic information. Then, the constructed meta-path information is subjected to neighborhood aggregation through graph convolution to acquire the correlations between different types of nodes and to further facilitate high-order feature fusion. Furthermore, user and item embedding vector representations are obtained through multiple iterations. Finally, the effectiveness and interpretability of the proposed approach are validated on three publicly available datasets in terms of NDCG, precision, and recall and are compared to all baselines.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] On Applying Meta-path for Network Embedding in Mining Heterogeneous DBLP Network
    Anil, Akash
    Chugh, Uppinder
    Singh, Sanasam Ranbir
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT II, 2019, 11942 : 249 - 257
  • [22] Course Recommendation Based on Enhancement of Meta-Path Embedding in Heterogeneous Graph
    Wu, Zhengyang
    Liang, Qingyu
    Zhan, Zehui
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [23] Heterogeneous Network Representation Learning Method Based on Meta-path
    Yin, Ying
    Ji, Lixin
    Huang, Ruiyang
    Cheng, Xiaotao
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2019, : 664 - 670
  • [24] Graph Transformer-based Heterogeneous Graph Neural Networks enhanced by multiple meta-path adjacency matrices decomposition
    Li, Shibin
    Gong, Jun
    Ke, Shengnan
    Tang, Shengjun
    NEUROCOMPUTING, 2025, 629
  • [25] Dynamic Heterogeneous Network Representation Method Based on Meta-Path
    Liu Q.
    Tan H.-S.
    Zhang Y.-M.
    Wang G.-Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (08): : 1830 - 1839
  • [26] Meta-path based heterogeneous combat network link prediction
    Li, Jichao
    Ge, Bingfeng
    Yang, Kewei
    Chen, Yingwu
    Tan, Yuejin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 482 : 507 - 523
  • [27] HEAM: Heterogeneous Network Embedding with Automatic Meta-path Construction
    Shi, Ruicong
    Liang, Tao
    Peng, Huailiang
    Jiang, Lei
    Dai, Qiong
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2020), PT I, 2020, 12274 : 304 - 315
  • [28] Optimized Meta-path extracted graph neural network for embedded computer performance evaluation model
    Feng, Jian
    Chen, Xu
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 2726 - 2737
  • [29] Multi-Feature Fusion in Graph Convolutional Networks for Data Network Propagation Path Tracing
    Jing, Dongsheng
    Yang, Yu
    Gu, Zhimin
    Feng, Renjun
    Li, Yan
    Jiang, Haitao
    ELECTRONICS, 2024, 13 (17)
  • [30] Drug-Disease Association Prediction Based on Meta-Path Heterogeneous Network with Global Graph Attention
    Yu, Yong
    Yang, Yujie
    Li, Xiaohan
    Gao, Yue
    Yu, Qian
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2024, 53 (04): : 576 - 583