GoVec: Gene Ontology Representation Learning Using Weighted Heterogeneous Graph and Meta-Path

被引:2
|
作者
Nourani, Esmaeil [1 ,2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Fac Comp Engn & Informat Technol, Dept Informat Technol, 35 Km Tabriz Maragheh Rd, Tabriz 53714161, Iran
[2] Univ Copenhagen, Novo Nordisk Fdn, Fac Hlth Sci, Ctr Prot Res, Copenhagen, Denmark
关键词
Gene Ontology; heterogeneous graph; meta-path; representation learning; SEMANTIC SIMILARITY MEASURES; GO TERMS;
D O I
10.1089/cmb.2021.0069
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Biomedical knowledge graphs are crucial to support data-intensive applications in the life sciences and health care. These graphs can be extended by generating a heterogeneous graph that contains both ontology terms and biomedical entities. However, state-of-the-art approaches for Gene Ontology representation learnings are constrained to homogeneous graphs that cannot represent different node types and relations. To address this limitation, we present GoVec to produce representations seamlessly for both ontologies and biological entities by utilizing meta-path-based representation learning in the heterogeneous graph. The resulting vectors can be used in many bioinformatics applications, particularly for calculating semantic similarity and extracting relations among biological entities. We verify the approach's usefulness by comparing the resulting semantic similarities with the manually produced similarities by the experts. Furthermore, the superiority of the GoVec is shown by an extensive set of quantitative and qualitative evaluations. Two downstream tasks, including protein-protein interaction and protein family similarity, are evaluated in comparison with many state-of-the-art approaches. Finally, as a qualitative visual representation, the separability of various protein families is examined and visually separable groups of proteins are generated, which shows the capability of GoVec representations to embed functional semantics into the vectors.
引用
收藏
页码:1196 / 1207
页数:12
相关论文
共 50 条
  • [1] HeteroSample: Meta-Path Guided Sampling for Heterogeneous Graph Representation Learning
    Liu, Ao
    Chen, Jing
    Du, Ruiying
    Wu, Cong
    Feng, Yebo
    Li, Teng
    Ma, Jianfeng
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (04): : 4390 - 4402
  • [2] Heterogeneous Graph Contrastive Learning with Meta-path Contexts and Weighted Negative Samples
    Yu, Jianxiang
    Li, Xiang
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 37 - 45
  • [3] Heterogeneous Graph Contrastive Learning With Meta-Path Contexts and Adaptively Weighted Negative Samples
    Yu, Jianxiang
    Ge, Qingqing
    Li, Xiang
    Zhou, Aoying
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) : 5181 - 5193
  • [4] Weighted Meta-Path Embedding Learning for Heterogeneous Information Networks
    Zhang, Yongjun
    Yang, Xiaoping
    Wang, Liang
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2020, PT I, 2020, 12342 : 29 - 40
  • [5] Heterogeneous Network Representation Learning Method Based on Meta-path
    Yin, Ying
    Ji, Lixin
    Huang, Ruiyang
    Cheng, Xiaotao
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2019, : 664 - 670
  • [6] A Semantic Aware Meta-Path Model for Heterogeneous Network Representation Learning
    Yang, Yiping
    Fu, Zhongwang
    Iftekhar, Adnan
    Cui, Xiaohui
    IEEE ACCESS, 2020, 8 : 220274 - 220284
  • [7] Heterogeneous Meta-Path Graph Learning for Higher-Order Social Recommendation
    Li, Munan
    Liu, Kai
    Liu, Hongbo
    Zhao, Zheng
    Ward, Tomas e.
    Wu, Xindong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (08)
  • [8] Meta-Path and Hierarchical Attention Based Temporal Heterogeneous Information Network Representation Learning
    基于元路径与层次注意力的时序异质信息网络表示学习方法
    Zhao, Zhongying (zzysuin@163.com), 1600, Science Press (34): : 1093 - 1102
  • [9] Personalised meta-path generation for heterogeneous graph neural networks
    Zhiqiang Zhong
    Cheng-Te Li
    Jun Pang
    Data Mining and Knowledge Discovery, 2022, 36 : 2299 - 2333
  • [10] MEGNN: Meta-path extracted graph neural network for heterogeneous
    Chang, Yaomin
    Chen, Chuan
    Hu, Weibo
    Zheng, Zibin
    Zhou, Xiaocong
    Chen, Shouzhi
    KNOWLEDGE-BASED SYSTEMS, 2022, 235