Hermite-Hadamard-type inequalities for generalized trigonometrically and hyperbolic ρ-convex functions in two dimension

被引:0
|
作者
Dragomir, Silvestru Sever [2 ,3 ]
Jleli, Mohamed [1 ]
Samet, Bessem [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] Victoria Univ, Math Coll Engn & Sci, POB 14428, Melbourne, Vic 8001, Australia
[3] Univ Witwatersrand, Sch Comp Sci & Appl Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
来源
OPEN MATHEMATICS | 2024年 / 22卷 / 01期
关键词
Hermite-Hadamard-type inequalities; trigonometrically rho-convex functions; hyperbolic rho-convex functions; Bessel functions;
D O I
10.1515/math-2024-0028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we establish Hermite-Hadamard-type inequalities for the two classes of functions X-+/-lambda (Omega) = {f is an element of C-2(Omega) : Delta f +/- lambda f >= 0}, where lambda > 0 and Omega is an open subset of R-2. We also obtain a characterization of the set X-lambda (Omega). Notice that in the one-dimensional case, if Omega = I (an open interval of R) and lambda = rho(2), rho > 0, then X-lambda (Omega) reduces to the class of functions f is an element of C-2 (I) such that f is trigonometrically rho-convex (resp. hyperbolic rho-convex) on I.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Some Hermite-Hadamard type inequalities for functions of generalized convex derivative
    Korus, P.
    ACTA MATHEMATICA HUNGARICA, 2021, 165 (2) : 463 - 473
  • [42] NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR GENERALIZED CONVEX FUNCTIONS WITH APPLICATIONS
    Set, Erhan
    Tomar, Muharrem
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (02): : 383 - 397
  • [43] Some Hermite–Hadamard type inequalities in the class of hyperbolic p-convex functions
    Silvestru Sever Dragomir
    Berikbol T. Torebek
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3413 - 3423
  • [44] GENERALIZATIONS OF SOME HERMITE-HADAMARD-TYPE INEQUALITIES
    Fok, Houkei
    Vong, Seakweng
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (03): : 359 - 370
  • [45] Some new hermite-hadamard-type inequalities for geometric-arithmetically s-convex functions
    Nanjing Univ. Informat. Sci. and Technol., College of Mathematics and Statistics, Nanjing, China
    不详
    WSEAS Trans. Math., 1 (452-461):
  • [46] Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions
    Budak, Huseyin
    Kara, Hasan
    Ali, Muhammad Aamir
    Khan, Sundas
    Chu, Yuming
    OPEN MATHEMATICS, 2021, 19 (01): : 1081 - 1097
  • [47] Some fractional Hermite-Hadamard-type integral inequalities with s-(α, m)-convex functions and their applications
    Liu, R. N.
    Xu, Run
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01):
  • [48] FRACTIONAL HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Budak, Huseyin
    Tunc, Tuba
    Sarikaya, Mehmet Zeki
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 705 - 718
  • [49] Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second qb-derivatives
    Ali, Muhammad Aamir
    Budak, Huseyin
    Abbas, Mujahid
    Chu, Yu-Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01):
  • [50] GENERALIZED HERMITE-HADAMARD INEQUALITIES FOR (α, η, γ, δ ) - p CONVEX FUNCTIONS
    Bilal, Muhammad
    Dragomir, Silvestru sever
    Khan, Asif raza
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2025, 29 (564): : 145 - 186