Hermite-Hadamard-type inequalities for generalized trigonometrically and hyperbolic ρ-convex functions in two dimension

被引:0
|
作者
Dragomir, Silvestru Sever [2 ,3 ]
Jleli, Mohamed [1 ]
Samet, Bessem [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] Victoria Univ, Math Coll Engn & Sci, POB 14428, Melbourne, Vic 8001, Australia
[3] Univ Witwatersrand, Sch Comp Sci & Appl Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
来源
OPEN MATHEMATICS | 2024年 / 22卷 / 01期
关键词
Hermite-Hadamard-type inequalities; trigonometrically rho-convex functions; hyperbolic rho-convex functions; Bessel functions;
D O I
10.1515/math-2024-0028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we establish Hermite-Hadamard-type inequalities for the two classes of functions X-+/-lambda (Omega) = {f is an element of C-2(Omega) : Delta f +/- lambda f >= 0}, where lambda > 0 and Omega is an open subset of R-2. We also obtain a characterization of the set X-lambda (Omega). Notice that in the one-dimensional case, if Omega = I (an open interval of R) and lambda = rho(2), rho > 0, then X-lambda (Omega) reduces to the class of functions f is an element of C-2 (I) such that f is trigonometrically rho-convex (resp. hyperbolic rho-convex) on I.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Strongly (g,h;α - m)-convex functions and the consequent Hermite-Hadamard-type inequalities
    Liu, Yonghong
    Farid, Ghulam
    Pecaric, Josip
    Ro, Jongsuk
    Elamin, Mawahib
    Abdel-Khalek, Sayed
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2025, 33 (01):
  • [22] On Hermite-Hadamard-Fejer-type inequalities for co-ordinated trigonometrically ρ-convex functions
    Kara, Hasan
    Budak, Huseyin
    Kiris, Mehmet Eyup
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (03)
  • [23] ON NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR GENERALIZED CONVEX FUNCTIONS
    Qaisar, Shahid
    He, Chuanjiang
    Hussain, Sabir
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 139 - 148
  • [24] HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS
    Aslani, S. Mohammadi
    Delavar, M. Rostamian
    Vaezpour, S. M.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (01): : 17 - 33
  • [25] Some Hermite–Hadamard type inequalities for functions of generalized convex derivative
    P. Kórus
    Acta Mathematica Hungarica, 2021, 165 : 463 - 473
  • [26] Generalized Hermite-Hadamard-Type Integral Inequalities for h-Godunova-Levin Functions
    Ali, Rana Safdar
    Mubeen, Shahid
    Ali, Sabila
    Rahman, Gauhar
    Younis, Jihad
    Ali, Asad
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [27] Hermite-Hadamard-Type Inequalities for r-Preinvex Functions
    Ul-Haq, Wasim
    Iqbal, Javed
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [28] Hermite-Hadamard inequalities for generalized convex functions
    Bessenyei M.
    Páles Z.
    aequationes mathematicae, 2005, 69 (1-2) : 32 - 40
  • [29] Exploration of Hermite-Hadamard-Type Integral Inequalities for Twice Differentiable h-Convex Functions
    Vivas-Cortez, Miguel
    Samraiz, Muhammad
    Ghaffar, Muhammad Tanveer
    Naheed, Saima
    Rahman, Gauhar
    Elmasry, Yasser
    FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [30] HERMITE-HADAMARD-TYPE INEQUALITIES INVOLVING SEVERAL KINDS OF FRACTIONAL CALCULUS FOR HARMONICALLY CONVEX FUNCTIONS
    Sun, Wenbing
    Wan, Haiyang
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)