Hermite-Hadamard-type inequalities for generalized trigonometrically and hyperbolic ρ-convex functions in two dimension

被引:0
|
作者
Dragomir, Silvestru Sever [2 ,3 ]
Jleli, Mohamed [1 ]
Samet, Bessem [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] Victoria Univ, Math Coll Engn & Sci, POB 14428, Melbourne, Vic 8001, Australia
[3] Univ Witwatersrand, Sch Comp Sci & Appl Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
来源
OPEN MATHEMATICS | 2024年 / 22卷 / 01期
关键词
Hermite-Hadamard-type inequalities; trigonometrically rho-convex functions; hyperbolic rho-convex functions; Bessel functions;
D O I
10.1515/math-2024-0028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we establish Hermite-Hadamard-type inequalities for the two classes of functions X-+/-lambda (Omega) = {f is an element of C-2(Omega) : Delta f +/- lambda f >= 0}, where lambda > 0 and Omega is an open subset of R-2. We also obtain a characterization of the set X-lambda (Omega). Notice that in the one-dimensional case, if Omega = I (an open interval of R) and lambda = rho(2), rho > 0, then X-lambda (Omega) reduces to the class of functions f is an element of C-2 (I) such that f is trigonometrically rho-convex (resp. hyperbolic rho-convex) on I.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] DISCRETE HERMITE-HADAMARD-TYPE INEQUALITIES FOR (s,m)-CONVEX FUNCTION
    Qi, Yongfang
    Wen, Qingzhi
    LI, Guoping
    Xiao, Kecheng
    Wang, Shan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [32] On Hermite-Hadamard-Type Inequalities for Coordinated h-Convex Interval-Valued Functions
    Zhao, Dafang
    Zhao, Guohui
    Ye, Guoju
    Liu, Wei
    Dragomir, Silvestru Sever
    MATHEMATICS, 2021, 9 (19)
  • [33] Hermite-Hadamard-type inequalities for the interval-valued approximatelyh-convex functions via generalized fractional integrals
    Zhao, Dafang
    Ali, Muhammad Aamir
    Kashuri, Artion
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [34] Hermite-hadamard-type inequalities for increasing positively homogeneous functions
    Adilov, G. R.
    Kemali, S.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2007, 2007 (1)
  • [35] Hermite-Hadamard-Type Inequalities for Increasing Positively Homogeneous Functions
    GR Adilov
    S Kemali
    Journal of Inequalities and Applications, 2007
  • [36] Some (p, q)-Estimates of Hermite-Hadamard-Type Inequalities for Coordinated Convex and Quasi- Convex Functions
    Kalsoom, Humaira
    Amer, Muhammad
    Junjua, Moin-ud-Din
    Hussain, Sabir
    Shahzadi, Gullnaz
    MATHEMATICS, 2019, 7 (08)
  • [37] Hermite-Hadamard-Type Inequalities for F-Convex Functions via Katugampola Fractional Integral
    Set, Erhan
    Mumcu, Ilker
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [38] HERMITE-HADAMARD TYPE INEQUALITIES FOR TRIGONOMETRICALLY P-FUNCTIONS
    Bekar, Kerim
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2019, 72 (11): : 1449 - 1457
  • [39] On Fejer-type inequalities for generalized trigonometrically and hyperbolic k-convex functions
    Dragomir, Silvestru Sever
    Jleli, Mohamed
    Samet, Bessem
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [40] Generalized fractional integral inequalities of Hermite–Hadamard type for harmonically convex functions
    Dafang Zhao
    Muhammad Aamir Ali
    Artion Kashuri
    Hüseyin Budak
    Advances in Difference Equations, 2020