Hermite-Hadamard-type inequalities for generalized trigonometrically and hyperbolic ρ-convex functions in two dimension

被引:0
|
作者
Dragomir, Silvestru Sever [2 ,3 ]
Jleli, Mohamed [1 ]
Samet, Bessem [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] Victoria Univ, Math Coll Engn & Sci, POB 14428, Melbourne, Vic 8001, Australia
[3] Univ Witwatersrand, Sch Comp Sci & Appl Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
来源
OPEN MATHEMATICS | 2024年 / 22卷 / 01期
关键词
Hermite-Hadamard-type inequalities; trigonometrically rho-convex functions; hyperbolic rho-convex functions; Bessel functions;
D O I
10.1515/math-2024-0028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we establish Hermite-Hadamard-type inequalities for the two classes of functions X-+/-lambda (Omega) = {f is an element of C-2(Omega) : Delta f +/- lambda f >= 0}, where lambda > 0 and Omega is an open subset of R-2. We also obtain a characterization of the set X-lambda (Omega). Notice that in the one-dimensional case, if Omega = I (an open interval of R) and lambda = rho(2), rho > 0, then X-lambda (Omega) reduces to the class of functions f is an element of C-2 (I) such that f is trigonometrically rho-convex (resp. hyperbolic rho-convex) on I.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Hermite-Hadamard-type inequalities for generalized 3-convex functions
    Bessenyei, M
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2004, 65 (1-2): : 223 - 232
  • [2] New Hermite-Hadamard-type inequalities for convex functions (II)
    Tseng, Kuei-Lin
    Hwang, Shiow-Ru
    Dragomir, Sever S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (01) : 401 - 418
  • [3] New Hermite-Hadamard-type inequalities for convex functions (I)
    Tseng, Kuei-Lin
    Hwang, Shiow-Ru
    Dragomir, Sever S.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (06) : 1005 - 1009
  • [4] Hermite-Hadamard-Type Integral Inequalities for Convex Functions and Their Applications
    Srivastava, Hari M.
    Mehrez, Sana
    Sitnik, Sergei M.
    MATHEMATICS, 2022, 10 (17)
  • [5] Hermite-Hadamard-Type Inequalities for Product of Functions by Using Convex Functions
    Nawaz, Tariq
    Memon, M. Asif
    Jacob, Kavikumar
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [6] Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function
    Han, Jiangfeng
    Mohammed, Pshtiwan Othman
    Zeng, Huidan
    OPEN MATHEMATICS, 2020, 18 : 794 - 806
  • [7] Hermite-Hadamard-type inequalities for (g, φh)- convex dominated functions
    Ozdemir, Muhamet Emin
    Gurbuz, Mustafa
    Kavurmaci, Havva
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [8] Hermite-Hadamard-type inequalities for (g,φh)-convex dominated functions
    Muhamet Emin Özdemir
    Mustafa Gürbüz
    Havva Kavurmacı
    Journal of Inequalities and Applications, 2013 (1)
  • [9] Hermite-Hadamard-Type Inequalities for the Generalized Geometrically Strongly Modified h-Convex Functions
    Yu, Xishan
    Saleem, Muhammad Shoaib
    Waheed, Shumaila
    Khan, Ilyas
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [10] Several Quantum Hermite-Hadamard-Type Integral Inequalities for Convex Functions
    Ciurdariu, Loredana
    Grecu, Eugenia
    FRACTAL AND FRACTIONAL, 2023, 7 (06)