Trace dual of additive cyclic codes over finite fields

被引:0
|
作者
Verma, Gyanendra K. [1 ]
Sharma, R. K. [1 ,2 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi, India
[2] South Asian Univ, Fac Math & Comp Sci, New Delhi, India
关键词
Cyclic codes; Additive codes; Complementary dual; Trace map; NEGACYCLIC CODES;
D O I
10.1007/s12095-024-00741-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In (Shi et al. Finite Fields Appl.80, 102087 2022) studied additive cyclic complementary dual codes with respect to trace Euclidean and trace Hermitian inner products over the finite field F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_4$$\end{document}. In this article, we extend their results over Fq2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q<^>2},$$\end{document} where q is an odd prime power. We describe the algebraic structure of additive cyclic codes and obtain the dual of a class of these codes with respect to the trace inner products. We also use generating polynomials to construct several examples of additive cyclic codes over F9.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_9.$$\end{document} These codes are better than linear codes of the same length and size. Furthermore, we describe the subfield codes and the trace codes of these codes as linear cyclic codes over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}.
引用
收藏
页码:1593 / 1608
页数:16
相关论文
共 50 条
  • [41] On some bounds on the minimum distance of cyclic codes over finite fields
    Ferruh Özbudak
    Seher Tutdere
    Oğuz Yayla
    Designs, Codes and Cryptography, 2015, 76 : 173 - 178
  • [42] On LCD repeated-root cyclic codes over finite fields
    Binbin Pang
    Shixin Zhu
    Jin Li
    Journal of Applied Mathematics and Computing, 2018, 56 : 625 - 635
  • [43] On LCD repeated-root cyclic codes over finite fields
    Pang, Binbin
    Zhu, Shixin
    Li, Jin
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 56 (1-2) : 625 - 635
  • [44] Repeated-Root Isodual Cyclic Codes over Finite Fields
    Batoul, Aicha
    Guenda, Kenza
    Gulliver, T. Aaron
    CODES, CRYPTOLOGY, AND INFORMATION SECURITY, C2SI 2015, 2015, 9084 : 119 - 132
  • [45] Group structure on projective spaces and cyclic codes over finite fields
    Lachaud, G
    Lucien, I
    Mercier, DJ
    Rolland, R
    FINITE FIELDS AND THEIR APPLICATIONS, 2000, 6 (02) : 119 - 129
  • [46] Griesmer type bounds for additive codes over finite fields, integral and fractional MDS codes
    Ball, Simeon
    Lavrauw, Michel
    Popatia, Tabriz
    DESIGNS CODES AND CRYPTOGRAPHY, 2025, 93 (01) : 175 - 196
  • [47] On self-dual cyclic codes over finite chain rings
    Aicha Batoul
    Kenza Guenda
    T. Aaron Gulliver
    Designs, Codes and Cryptography, 2014, 70 : 347 - 358
  • [48] On self-dual cyclic codes over finite chain rings
    Batoul, Aicha
    Guenda, Kenza
    Gulliver, T. Aaron
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 70 (03) : 347 - 358
  • [49] Multi-twisted additive codes over finite fields are asymptotically good
    Sandeep Sharma
    Anuradha Sharma
    Cryptography and Communications, 2023, 15 : 17 - 33
  • [50] On Additive Quasi-abelian Codes over Finite Fields and Their Duality Properties
    Sharma, S.
    Yadav, M.
    Sharma, A.
    PROBLEMS OF INFORMATION TRANSMISSION, 2024, 60 (03) : 155 - 188