Trace dual of additive cyclic codes over finite fields

被引:0
|
作者
Verma, Gyanendra K. [1 ]
Sharma, R. K. [1 ,2 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi, India
[2] South Asian Univ, Fac Math & Comp Sci, New Delhi, India
关键词
Cyclic codes; Additive codes; Complementary dual; Trace map; NEGACYCLIC CODES;
D O I
10.1007/s12095-024-00741-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In (Shi et al. Finite Fields Appl.80, 102087 2022) studied additive cyclic complementary dual codes with respect to trace Euclidean and trace Hermitian inner products over the finite field F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_4$$\end{document}. In this article, we extend their results over Fq2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q<^>2},$$\end{document} where q is an odd prime power. We describe the algebraic structure of additive cyclic codes and obtain the dual of a class of these codes with respect to the trace inner products. We also use generating polynomials to construct several examples of additive cyclic codes over F9.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_9.$$\end{document} These codes are better than linear codes of the same length and size. Furthermore, we describe the subfield codes and the trace codes of these codes as linear cyclic codes over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}.
引用
收藏
页码:1593 / 1608
页数:16
相关论文
共 50 条
  • [31] Additive cyclic complementary dual codes over F4
    Shi, Minjia
    Liu, Na
    Ozbudak, Ferruh
    Sole, Patrick
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 83
  • [32] On self-dual constacyclic codes over finite fields
    Yiansheng Yang
    Wenchao Cai
    Designs, Codes and Cryptography, 2015, 74 : 355 - 364
  • [33] Frames over finite fields and self-dual codes
    Shi, Minjia
    Liu, Yingying
    Kim, Jon-Lark
    Sole, Patrick
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023,
  • [34] On self-dual constacyclic codes over finite fields
    Yang, Yiansheng
    Cai, Wenchao
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 74 (02) : 355 - 364
  • [35] Additive one-rank hull codes over finite fields
    Agrawal, Astha
    Sharma, R. K.
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 96
  • [36] Correction to: Multi-twisted additive codes over finite fields
    Sandeep Sharma
    Anuradha Sharma
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2024, 65 : 451 - 453
  • [37] ON COMPLEMENTARY DUAL ADDITIVE CYCLIC CODES
    Guneri, Cem
    Ozbudak, Ferruh
    Ozdemir, Funda
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2017, 11 (02) : 353 - 357
  • [38] ADDITIVE SELF-DUAL CODES OVER FIELDS OF EVEN ORDER
    Dougherty, Steven T.
    Kim, Jon-Lark
    Lee, Nari
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (02) : 341 - 357
  • [39] Self dual and MHDR dual cyclic codes over finite chain rings
    Dalal, Monika
    Garg, Disha
    Dutt, Sucheta
    Sehmi, Ranjeet
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2024, : 1475 - 1489
  • [40] On some bounds on the minimum distance of cyclic codes over finite fields
    Ozbudak, Ferruh
    Tutdere, Seher
    Yayla, Oguz
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 76 (02) : 173 - 178