Trace dual of additive cyclic codes over finite fields

被引:0
|
作者
Verma, Gyanendra K. [1 ]
Sharma, R. K. [1 ,2 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi, India
[2] South Asian Univ, Fac Math & Comp Sci, New Delhi, India
关键词
Cyclic codes; Additive codes; Complementary dual; Trace map; NEGACYCLIC CODES;
D O I
10.1007/s12095-024-00741-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In (Shi et al. Finite Fields Appl.80, 102087 2022) studied additive cyclic complementary dual codes with respect to trace Euclidean and trace Hermitian inner products over the finite field F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_4$$\end{document}. In this article, we extend their results over Fq2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q<^>2},$$\end{document} where q is an odd prime power. We describe the algebraic structure of additive cyclic codes and obtain the dual of a class of these codes with respect to the trace inner products. We also use generating polynomials to construct several examples of additive cyclic codes over F9.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_9.$$\end{document} These codes are better than linear codes of the same length and size. Furthermore, we describe the subfield codes and the trace codes of these codes as linear cyclic codes over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}.
引用
收藏
页码:1593 / 1608
页数:16
相关论文
共 50 条
  • [21] Additive skew G-codes over finite fields
    S. T. Dougherty
    Adrian Korban
    Serap Şahinkaya
    Deniz Ustun
    Applicable Algebra in Engineering, Communication and Computing, 2023, 34 : 423 - 442
  • [22] Multi-twisted additive codes over finite fields
    Sandeep Sharma
    Anuradha Sharma
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2022, 63 : 287 - 320
  • [23] Additive skew G-codes over finite fields
    Dougherty, S. T.
    Korban, Adrian
    Sahinkaya, Serap
    Ustun, Deniz
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (03) : 423 - 442
  • [24] Multi-twisted codes over finite fields and their dual codes
    Sharma, Anuradha
    Chauhan, Varsha
    Singh, Harshdeep
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 51 : 270 - 297
  • [25] Enumeration of self-dual cyclic codes of some specific lengths over finite fields
    Prugsapitak, Supawadee
    Jitman, Somphong
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (03)
  • [26] About quasi-cyclic codes over finite fields
    Ozkan, Mustafa
    Oke, Figen
    6TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2017), 2018, 1926
  • [27] Two dimensional double cyclic codes over finite fields
    Hajiaghajanpour, Niloufar
    Khashyarmanesh, Kazem
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2025, 36 (02) : 107 - 131
  • [28] On the locality of quasi-cyclic codes over finite fields
    Rajput, Charul
    Bhaintwal, Maheshanand
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (03) : 759 - 777
  • [29] On the locality of quasi-cyclic codes over finite fields
    Charul Rajput
    Maheshanand Bhaintwal
    Designs, Codes and Cryptography, 2022, 90 : 759 - 777
  • [30] Isodual cyclic codes over finite fields of odd characteristic
    Alahmadi, Adel
    Alsulami, Safa
    Hijazi, Rola
    Sole, Patrick
    DISCRETE MATHEMATICS, 2016, 339 (01) : 344 - 353