Reconfiguring Shortest Paths in Graphs

被引:0
|
作者
Gajjar, Kshitij [1 ]
Jha, Agastya Vibhuti [2 ]
Kumar, Manish [3 ]
Lahiri, Abhiruk [4 ]
机构
[1] Indian Inst Technol Jodhpur, Jodhpur, India
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] Negev & Bar ilan Univ, Bengur Univ, Beer Sheva, Israel
[4] Charles Univ Prague, Prague, Czech Republic
基金
以色列科学基金会;
关键词
Reconfiguration; Shortest path; PSPACE-complete; Circle graph; Boolean hypercube; Bridged graph; Line graph; Hardness of approximation; COMPLEXITY; CONNECTION; HYPERCUBES; NETWORKS;
D O I
10.1007/s00453-024-01263-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P not equal NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {NP}}\,}}$$\end{document}), even for relaxed variants of the problem (assuming P not equal PSPACE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {PSPACE}}\,}}$$\end{document}). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}) contiguous vertices on a shortest path can be changed at a time.
引用
收藏
页码:3309 / 3338
页数:30
相关论文
共 50 条
  • [1] Reconfiguring Shortest Paths in Graphs
    Gajjar, Kshitij
    Jha, Agastya Vibhuti
    Kumar, Manish
    Lahiri, Abhiruk
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 9758 - 9766
  • [2] Shortest paths in Sierpinski graphs
    Xue, Bing
    Zuo, Liancui
    Wang, Guanghui
    Li, Guojun
    DISCRETE APPLIED MATHEMATICS, 2014, 162 : 314 - 321
  • [3] Shortest Paths on Evolving Graphs
    Zou, Yiming
    Zeng, Gang
    Wang, Yuyi
    Liu, Xingwu
    Sun, Xiaoming
    Zhang, Jialin
    Li, Qiang
    COMPUTATIONAL SOCIAL NETWORKS, CSONET 2016, 2016, 9795 : 1 - 13
  • [4] Shortest paths of butterfly graphs
    Hwang, SC
    Chen, GH
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-V, PROCEEDINGS, 1999, : 2195 - 2199
  • [5] Approximating Shortest Paths in Graphs
    Sen, Sandeep
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5431 : 32 - 43
  • [6] DISJOINT SHORTEST PATHS IN GRAPHS
    ENOMOTO, H
    SAITO, A
    COMBINATORICA, 1984, 4 (04) : 275 - 279
  • [7] Shortest paths in reachability graphs
    Humboldt-Universitaet zu Berlin, Berlin, Germany
    J Comput Syst Sci, 2 (314-323):
  • [8] Reconfiguration graphs of shortest paths
    Asplund, John
    Edoh, Kossi
    Haas, Ruth
    Hristova, Yulia
    Novick, Beth
    Werner, Brett
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2938 - 2948
  • [9] Shortest paths in conservative graphs
    Conforti, M
    Rizzi, R
    DISCRETE MATHEMATICS, 2001, 226 (1-3) : 143 - 153
  • [10] SHORTEST PATHS IN PROBABILISTIC GRAPHS
    FRANK, H
    OPERATIONS RESEARCH, 1969, 17 (04) : 583 - &