MULTILEVEL PARTICLE FILTERS FOR A CLASS OF PARTIALLY OBSERVED PIECEWISE DETERMINISTIC MARKOV PROCESSES

被引:0
|
作者
Jasra, Ajay [1 ]
Kamatani, Kengo [2 ]
Maama, Mohamed [3 ]
机构
[1] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen, Peoples R China
[2] Inst Stat Math, Tokyo 1900014, Japan
[3] King Abdullah Univ Sci & Technol, Appl Math & Computat Sci Program, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2024年 / 46卷 / 04期
关键词
multilevel Monte Carlo; particle filters; PDMPs; filtering;
D O I
10.1137/23M1600505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the filtering of a class of partially observed piecewise deterministic Markov processes. In particular, we assume that an ordinary differential equation (ODE) drives the deterministic element and can only be solved numerically via a time discretization. (2020), pp. 138--172], a new particle and multilevel particle filter (MLPF) in order to approximate the filter associated to the discretized ODE. We provide a bound on the mean square error associated to the MLPF which provides guidance on setting the simulation parameters of the algorithm and implies that significant computational gains can be obtained versus using a particle filter. Our theoretical claims are confirmed in several numerical examples.
引用
收藏
页码:A2475 / A2502
页数:28
相关论文
共 50 条
  • [41] Supports of invariant measures for piecewise deterministic Markov processes
    Benaim, M.
    Colonius, F.
    Lettau, R.
    NONLINEARITY, 2017, 30 (09) : 3400 - 3418
  • [42] Value passing for communicating piecewise deterministic Markov processes
    Strubbe, Stefan
    van der Schaft, Arjan
    Julius, Agung
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 4736 - +
  • [43] Bisimulation for communicating piecewise deterministic Markov processes (CPDPs)
    Strubbe, S
    van der Schaft, A
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2005, 3414 : 623 - 639
  • [44] Adaptive average control for piecewise deterministic Markov processes
    Costa, O. L. V.
    Dufour, F.
    Genadot, A.
    SYSTEMS & CONTROL LETTERS, 2024, 192
  • [45] Qualitative properties of certain piecewise deterministic Markov processes
    Benaim, Michel
    Le Borgne, Stephane
    Malrieu, Florent
    Zitt, Pierre-Andre
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (03): : 1040 - 1075
  • [46] Polynomial Convergence Rates of Piecewise Deterministic Markov Processes
    Roberts, Gareth O.
    Rosenthal, Jeffrey S.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2023, 25 (01)
  • [47] Substochastic semigroups and densities of piecewise deterministic Markov processes
    Tyran-Kaminska, Marta
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (02) : 385 - 402
  • [48] A useful technique for piecewise deterministic Markov decision processes
    Guo, Xin
    Zhang, Yi
    OPERATIONS RESEARCH LETTERS, 2021, 49 (01) : 55 - 61
  • [49] Approximations of Piecewise Deterministic Markov Processes and their convergence properties
    Bertazzi, Andrea
    Bierkens, Joris
    Dobson, Paul
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 154 : 91 - 153
  • [50] Stochastic semantics for Communicating Piecewise Deterministic Markov Processes
    Strubbe, Stefan
    van der Schaft, Arjan
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 6103 - 6108