MULTILEVEL PARTICLE FILTERS FOR A CLASS OF PARTIALLY OBSERVED PIECEWISE DETERMINISTIC MARKOV PROCESSES

被引:0
|
作者
Jasra, Ajay [1 ]
Kamatani, Kengo [2 ]
Maama, Mohamed [3 ]
机构
[1] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen, Peoples R China
[2] Inst Stat Math, Tokyo 1900014, Japan
[3] King Abdullah Univ Sci & Technol, Appl Math & Computat Sci Program, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2024年 / 46卷 / 04期
关键词
multilevel Monte Carlo; particle filters; PDMPs; filtering;
D O I
10.1137/23M1600505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the filtering of a class of partially observed piecewise deterministic Markov processes. In particular, we assume that an ordinary differential equation (ODE) drives the deterministic element and can only be solved numerically via a time discretization. (2020), pp. 138--172], a new particle and multilevel particle filter (MLPF) in order to approximate the filter associated to the discretized ODE. We provide a bound on the mean square error associated to the MLPF which provides guidance on setting the simulation parameters of the algorithm and implies that significant computational gains can be obtained versus using a particle filter. Our theoretical claims are confirmed in several numerical examples.
引用
收藏
页码:A2475 / A2502
页数:28
相关论文
共 50 条
  • [31] Application of the interacting particle system method to piecewise deterministic Markov processes used in reliability
    Chraibi, Hassane
    Dutfoy, Anne
    Galtier, Thomas
    Garnier, Josselin
    CHAOS, 2019, 29 (06)
  • [32] Particle filters for partially observed diffusions
    Fearnhead, Paul
    Papaspiliopoulos, Omiros
    Roberts, Gareth O.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 : 755 - 777
  • [33] Algorithmic bisimulation for Communicating Piecewise Deterministic Markov Processes
    Strubbe, Stefan
    van der Schaft, Arjan
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 6109 - 6114
  • [34] On the Poisson equation for piecewise-deterministic Markov processes
    Costa, OLV
    Dufour, F
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (03) : 985 - 1001
  • [35] Polynomial Convergence Rates of Piecewise Deterministic Markov Processes
    Gareth O. Roberts
    Jeffrey S. Rosenthal
    Methodology and Computing in Applied Probability, 2023, 25
  • [36] Approximation methods for piecewise deterministic Markov processes and their costs
    Kritzer, Peter
    Leobacher, Gunther
    Szoelgyenyi, Michaela
    Thonhauser, Stefan
    SCANDINAVIAN ACTUARIAL JOURNAL, 2019, (04) : 308 - 335
  • [37] Adaptive discounted control for piecewise deterministic Markov processes
    Costa, O. L. V.
    Dufour, F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (02)
  • [38] NUMERICAL METHOD FOR EXPECTATIONS OF PIECEWISE DETERMINISTIC MARKOV PROCESSES
    Brandejsky, Adrien
    de Saporta, Benoite
    Dufour, Francois
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2012, 7 (01) : 63 - 104
  • [39] Numerical methods for piecewise deterministic Markov processes with boundary
    Cocozza-Thivent, Christiane
    Eymard, Robert
    Goudenege, Ludovic
    Roussignol, Michel
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (01) : 170 - 208
  • [40] AVERAGE CONTINUOUS CONTROL OF PIECEWISE DETERMINISTIC MARKOV PROCESSES
    Costa, O. L. V.
    Dufour, F.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (07) : 4262 - 4291