MULTILEVEL PARTICLE FILTERS FOR A CLASS OF PARTIALLY OBSERVED PIECEWISE DETERMINISTIC MARKOV PROCESSES

被引:0
|
作者
Jasra, Ajay [1 ]
Kamatani, Kengo [2 ]
Maama, Mohamed [3 ]
机构
[1] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen, Peoples R China
[2] Inst Stat Math, Tokyo 1900014, Japan
[3] King Abdullah Univ Sci & Technol, Appl Math & Computat Sci Program, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2024年 / 46卷 / 04期
关键词
multilevel Monte Carlo; particle filters; PDMPs; filtering;
D O I
10.1137/23M1600505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the filtering of a class of partially observed piecewise deterministic Markov processes. In particular, we assume that an ordinary differential equation (ODE) drives the deterministic element and can only be solved numerically via a time discretization. (2020), pp. 138--172], a new particle and multilevel particle filter (MLPF) in order to approximate the filter associated to the discretized ODE. We provide a bound on the mean square error associated to the MLPF which provides guidance on setting the simulation parameters of the algorithm and implies that significant computational gains can be obtained versus using a particle filter. Our theoretical claims are confirmed in several numerical examples.
引用
收藏
页码:A2475 / A2502
页数:28
相关论文
共 50 条
  • [21] IMPULSE CONTROL OF PIECEWISE DETERMINISTIC MARKOV PROCESSES
    Dempster, M. A. H.
    Ye, J. J.
    ANNALS OF APPLIED PROBABILITY, 1995, 5 (02): : 399 - 423
  • [22] Stability and Ergodicity of Piecewise Deterministic Markov Processes
    Costa, O. L. V.
    Dufour, F.
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 1525 - 1530
  • [23] Reachability questions in piecewise deterministic Markov processes
    Bujorianu, ML
    Lygeros, J
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, PROCEEDINGS, 2003, 2623 : 126 - 140
  • [24] On time reversal of piecewise deterministic Markov processes
    Loepker, Andreas
    Palmowski, Zbigniew
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 29
  • [25] Piecewise deterministic Markov processes and their invariant measures
    Durmus, Alain
    Guillin, Arnaud
    Monmarche, Pierre
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (03): : 1442 - 1475
  • [26] Densities for piecewise deterministic Markov processes with boundary
    Gwizdz, Piotr
    Tyran-Kaminska, Marta
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) : 384 - 425
  • [27] Stability of piecewise-deterministic Markov processes
    Dufour, F
    Costa, OLV
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (05) : 1483 - 1502
  • [28] Stability and ergodicity of piecewise deterministic Markov processes
    Costa, O. L. V.
    Dufour, F.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (02) : 1053 - 1077
  • [29] Demographic noise and piecewise deterministic Markov processes
    Realpe-Gomez, John
    Galla, Tobias
    McKane, Alan J.
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [30] Infinite dimensional Piecewise Deterministic Markov Processes
    Dobson, Paul
    Bierkens, Joris
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 165 : 337 - 396