MULTILEVEL PARTICLE FILTERS FOR A CLASS OF PARTIALLY OBSERVED PIECEWISE DETERMINISTIC MARKOV PROCESSES

被引:0
|
作者
Jasra, Ajay [1 ]
Kamatani, Kengo [2 ]
Maama, Mohamed [3 ]
机构
[1] Chinese Univ Hong Kong, Sch Data Sci, Shenzhen, Peoples R China
[2] Inst Stat Math, Tokyo 1900014, Japan
[3] King Abdullah Univ Sci & Technol, Appl Math & Computat Sci Program, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2024年 / 46卷 / 04期
关键词
multilevel Monte Carlo; particle filters; PDMPs; filtering;
D O I
10.1137/23M1600505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the filtering of a class of partially observed piecewise deterministic Markov processes. In particular, we assume that an ordinary differential equation (ODE) drives the deterministic element and can only be solved numerically via a time discretization. (2020), pp. 138--172], a new particle and multilevel particle filter (MLPF) in order to approximate the filter associated to the discretized ODE. We provide a bound on the mean square error associated to the MLPF which provides guidance on setting the simulation parameters of the algorithm and implies that significant computational gains can be obtained versus using a particle filter. Our theoretical claims are confirmed in several numerical examples.
引用
收藏
页码:A2475 / A2502
页数:28
相关论文
共 50 条
  • [1] Optimal stopping for partially observed piecewise-deterministic Markov processes
    Brandejsky, Adrien
    de Saporta, Benoite
    Dufour, Francois
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (08) : 3201 - 3238
  • [2] Particle filters for partially observed Markov chains
    Caylus, N
    Guyader, A
    LeGland, F
    PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 553 - 556
  • [3] OPTIMAL CONTROL OF PARTIALLY OBSERVABLE PIECEWISE DETERMINISTIC MARKOV PROCESSES
    Bauerle, Nicole
    Lange, Dirk
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (02) : 1441 - 1462
  • [4] On the first hitting time for a class of piecewise deterministic markov processes
    Chong, Xiaowen
    IAENG International Journal of Applied Mathematics, 2020, 50 (02) : 268 - 272
  • [5] NONPARAMETRIC ESTIMATION FOR A CLASS OF PIECEWISE-DETERMINISTIC MARKOV PROCESSES
    Fujii, Takayuki
    JOURNAL OF APPLIED PROBABILITY, 2013, 50 (04) : 931 - 942
  • [6] Complexity Bounds for Deterministic Partially Observed Markov Decision Processes
    Vessaire, Cyrille
    Carpentier, Pierre
    Chancelier, Jean-Philippe
    De Lara, Michel
    Rodriguez-Martinez, Alejandro
    ANNALS OF OPERATIONS RESEARCH, 2025, 344 (01) : 345 - 382
  • [7] Linear Noise Approximation for a Class of Piecewise Deterministic Markov Processes
    Modi, Saurabh
    Soltani, Mohammad
    Singh, Abhyudai
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 1993 - 1998
  • [8] Exact Simulation of the Jump Times of a Class of Piecewise Deterministic Markov Processes
    Vincent Lemaire
    Michèle Thieullen
    Nicolas Thomas
    Journal of Scientific Computing, 2018, 75 : 1776 - 1807
  • [9] Exact Simulation of the Jump Times of a Class of Piecewise Deterministic Markov Processes
    Lemaire, Vincent
    Thieullen, Michele
    Thomas, Nicolas
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (03) : 1776 - 1807
  • [10] ON LEVEL CROSSINGS FOR A GENERAL CLASS OF PIECEWISE-DETERMINISTIC MARKOV PROCESSES
    Borovkov, K.
    Last, G.
    ADVANCES IN APPLIED PROBABILITY, 2008, 40 (03) : 815 - 834