One-dimensional Z2 lattice gauge theory in periodic Gauss-law sectors

被引:0
|
作者
Sharma, Vaibhav [1 ]
Mueller, Erich J. [1 ]
机构
[1] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Density (optical) - Gaussian distribution - Hamiltonians;
D O I
10.1103/PhysRevA.110.033314
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We calculate the properties of a one-dimensional Z(2) lattice gauge theory in different Gauss-law sectors, corresponding to different configurations of static charges, set by the orientations of the gauge spins. Importantly, in quantum simulator experiments these sectors can be accessed without adding any additional physical particles or changing the Hamiltonian: the Gauss-law sectors are simply set by the initial conditions. We study the interplay between conservation laws and interactions when the static charges are chosen to form periodic patterns. We classify the different Gauss-law sectors and use the density matrix renormalization group to calculate the ground-state compressibility, density profiles, charge-density-wave order parameters, and single-particle correlation functions as a function of matter density. We find confined and deconfined phases, charge density waves, correlated insulators, and supersolids.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Matrix product representation of gauge invariant states in a Z2 lattice gauge theory -: art. no. 022
    Sugihara, T
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (07):
  • [42] Dualities in One-Dimensional Quantum Lattice Models: Topological Sectors
    Lootens, Laurens
    Delcamp, Clement
    Verstraete, Frank
    PRX QUANTUM, 2024, 5 (01):
  • [43] A GAUGE-THEORY OF ONE-DIMENSIONAL ANYONS
    RABELLO, SJ
    PHYSICS LETTERS B, 1995, 363 (03) : 180 - 183
  • [44] Percolation as a confinement order parameter in Z2 lattice gauge theories
    Linsel, Simon M.
    Bohrdt, Annabelle
    Homeier, Lukas
    Pollet, Lode
    Grusdt, Fabian
    PHYSICAL REVIEW B, 2024, 110 (24)
  • [45] Investigation of the critical behavior of the critical point of the Z2 gauge lattice
    Blum, Y
    Coyle, PK
    Elitzur, S
    Rabinovici, E
    Rubinstein, H
    Solomon, S
    NUCLEAR PHYSICS B, 1998, 535 (03) : 731 - 738
  • [46] Z2 GAUGE-MODEL ON THE TRUNCATED-TETRAHEDRON LATTICE
    CAMPESINOROMEO, E
    DOLIVO, JC
    SOCOLOVSKY, M
    LETTERE AL NUOVO CIMENTO, 1982, 33 (02): : 52 - 56
  • [47] Simple Z2 lattice gauge theories at finite fermion density
    Prosko, Christian
    Lee, Shu-Ping
    Maciejko, Joseph
    PHYSICAL REVIEW B, 2017, 96 (20)
  • [48] Topological invariants for phase transition points of one-dimensional Z2 topological systems
    Li, Linhu
    Yang, Chao
    Chen, Shu
    EUROPEAN PHYSICAL JOURNAL B, 2016, 89 (09):
  • [49] Topological invariants for phase transition points of one-dimensional Z2 topological systems
    Linhu Li
    Chao Yang
    Shu Chen
    The European Physical Journal B, 2016, 89
  • [50] Phenomenological Z2 lattice gauge theory of the spin-liquid state of the kagome Heisenberg antiferromagnet
    Wan, Yuan
    Tchernyshyov, Oleg
    PHYSICAL REVIEW B, 2013, 87 (10)