One-dimensional Z2 lattice gauge theory in periodic Gauss-law sectors

被引:0
|
作者
Sharma, Vaibhav [1 ]
Mueller, Erich J. [1 ]
机构
[1] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Density (optical) - Gaussian distribution - Hamiltonians;
D O I
10.1103/PhysRevA.110.033314
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We calculate the properties of a one-dimensional Z(2) lattice gauge theory in different Gauss-law sectors, corresponding to different configurations of static charges, set by the orientations of the gauge spins. Importantly, in quantum simulator experiments these sectors can be accessed without adding any additional physical particles or changing the Hamiltonian: the Gauss-law sectors are simply set by the initial conditions. We study the interplay between conservation laws and interactions when the static charges are chosen to form periodic patterns. We classify the different Gauss-law sectors and use the density matrix renormalization group to calculate the ground-state compressibility, density profiles, charge-density-wave order parameters, and single-particle correlation functions as a function of matter density. We find confined and deconfined phases, charge density waves, correlated insulators, and supersolids.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Z2 MONOPOLES IN THE STANDARD SU(2) LATTICE GAUGE-THEORY MODEL
    MACK, G
    PETKOVA, VB
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1982, 12 (02): : 177 - 184
  • [22] Non-invertible topological defects in 4-dimensional Z2 pure lattice gauge theory
    Koide, Masataka
    Nagoya, Yuta
    Yamaguchi, Satoshi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2022, 2022 (01):
  • [23] Dynamical localization in Z2 lattice gauge theories
    Smith, Adam
    Knolle, Johannes
    Moessner, Roderich
    Kovrizhin, Dmitry L.
    PHYSICAL REVIEW B, 2018, 97 (24)
  • [24] LARGE DIMENSIONAL LATTICE GAUGE-THEORIES .1. Z2 PURE GAUGE SYSTEM
    DROUFFE, JM
    NUCLEAR PHYSICS B, 1980, 170 (02) : 211 - 227
  • [25] Z2 monopoles in D=2+1 SU(2) lattice gauge theory
    Hart, A
    Lucini, B
    Teper, M
    Schram, Z
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (11):
  • [26] Bipartite charge fluctuations in one-dimensional Z2 superconductors and insulators
    Herviou, Loic
    Mora, Christophe
    Le Hur, Karyn
    PHYSICAL REVIEW B, 2017, 96 (12)
  • [27] Photon-Mediated Stroboscopic Quantum Simulation of a Z2 Lattice Gauge Theory
    Armon, Tsafrir
    Ashkenazi, Shachar
    Garcia-Moreno, Gerardo
    Gonzalez-Tudela, Alejandro
    Zohar, Erez
    PHYSICAL REVIEW LETTERS, 2021, 127 (25)
  • [28] MODIFIED WILSON ACTION AND Z2 ARTIFACTS IN SU(2) LATTICE GAUGE-THEORY
    BORNYAKOV, VG
    CREUTZ, M
    MITRJUSHKIN, VK
    PHYSICAL REVIEW D, 1991, 44 (12): : 3918 - 3923
  • [29] DEPENDENCE OF THE GAUSS-LAW CONSTRAINTS ON THE REGULARIZATION SCHEME IN NON-ABELIAN CHIRAL GAUGE-THEORY
    ZHOU, JG
    LI, SM
    LIU, YY
    PHYSICAL REVIEW D, 1993, 48 (02): : 961 - 963
  • [30] Localization of Dirac modes in finite-temperature Z2 gauge theory on the lattice
    Baranka, Gyorgy
    Giordano, Matteo
    PHYSICAL REVIEW D, 2021, 104 (05)