One-dimensional Z2 lattice gauge theory in periodic Gauss-law sectors

被引:0
|
作者
Sharma, Vaibhav [1 ]
Mueller, Erich J. [1 ]
机构
[1] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Density (optical) - Gaussian distribution - Hamiltonians;
D O I
10.1103/PhysRevA.110.033314
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We calculate the properties of a one-dimensional Z(2) lattice gauge theory in different Gauss-law sectors, corresponding to different configurations of static charges, set by the orientations of the gauge spins. Importantly, in quantum simulator experiments these sectors can be accessed without adding any additional physical particles or changing the Hamiltonian: the Gauss-law sectors are simply set by the initial conditions. We study the interplay between conservation laws and interactions when the static charges are chosen to form periodic patterns. We classify the different Gauss-law sectors and use the density matrix renormalization group to calculate the ground-state compressibility, density profiles, charge-density-wave order parameters, and single-particle correlation functions as a function of matter density. We find confined and deconfined phases, charge density waves, correlated insulators, and supersolids.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Correspondence between the Hamiltonian cycle problem and the quantum Z2 lattice gauge theory
    Cui, Xiaopeng
    Shi, Yu
    EPL, 2023, 144 (04)
  • [32] FERMION REPRESENTATION FOR THE Z2 LATTICE GAUGE-THEORY IN 2+1 DIMENSIONS
    FRADKIN, E
    SREDNICKI, M
    SUSSKIND, L
    PHYSICAL REVIEW D, 1980, 21 (10) : 2885 - 2891
  • [33] FINITE-TEMPERATURE ANALYSIS OF SU(2)/Z2 LATTICE GAUGE-THEORY
    BURDEN, CJ
    NUCLEAR PHYSICS B, 1985, 257 (05) : 663 - 694
  • [34] Stable and unstable periodic orbits in the one-dimensional lattice φ4 theory
    Aoki, Kenichiro
    PHYSICAL REVIEW E, 2016, 94 (04)
  • [35] COMPARISON OF LATTICE GAUGE-THEORIES WITH GAUGE GROUPS Z2 AND SU(2)
    MACK, G
    PETKOVA, VB
    ANNALS OF PHYSICS, 1979, 123 (02) : 442 - 467
  • [36] Scar states in deconfined Z2 lattice gauge theories
    Aramthottil, Adith Sai
    Bhattacharya, Utso
    Gonzalez-Cuadra, Daniel
    Lewenstein, Maciej
    Barbiero, Luca
    Zakrzewski, Jakub
    PHYSICAL REVIEW B, 2022, 106 (04)
  • [37] Electric-magnetic duality and Z2 symmetry enriched Abelian lattice gauge theory
    Jia, Zhian
    Kaszlikowski, Dagomir
    Tan, Sheng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (25)
  • [38] PERIODIC STRUCTURES IN A ONE-DIMENSIONAL NONLINEAR LATTICE
    DINDA, PT
    COQUET, E
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (33) : 6953 - 6963
  • [39] STRING THEORY ON THE ONE-DIMENSIONAL LATTICE
    PARISI, G
    PHYSICS LETTERS B, 1990, 238 (2-4) : 213 - 216
  • [40] Phase transition in one-dimensional lattice gauge theories
    Khorrami, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (03) : 557 - 567