One-dimensional Z2 lattice gauge theory in periodic Gauss-law sectors

被引:0
|
作者
Sharma, Vaibhav [1 ]
Mueller, Erich J. [1 ]
机构
[1] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Density (optical) - Gaussian distribution - Hamiltonians;
D O I
10.1103/PhysRevA.110.033314
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We calculate the properties of a one-dimensional Z(2) lattice gauge theory in different Gauss-law sectors, corresponding to different configurations of static charges, set by the orientations of the gauge spins. Importantly, in quantum simulator experiments these sectors can be accessed without adding any additional physical particles or changing the Hamiltonian: the Gauss-law sectors are simply set by the initial conditions. We study the interplay between conservation laws and interactions when the static charges are chosen to form periodic patterns. We classify the different Gauss-law sectors and use the density matrix renormalization group to calculate the ground-state compressibility, density profiles, charge-density-wave order parameters, and single-particle correlation functions as a function of matter density. We find confined and deconfined phases, charge density waves, correlated insulators, and supersolids.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Confinement induced frustration in a one-dimensional Z2 lattice gauge theory
    Kebric, Matjaz
    Borla, Umberto
    Schollwoeck, Ulrich
    Moroz, Sergej
    Barbiero, Luca
    Grusdt, Fabian
    NEW JOURNAL OF PHYSICS, 2023, 25 (01):
  • [2] Emergence of Gauss' law in a Z2 lattice gauge theory in 1+1 dimensions
    Frank, Jernej
    Huffman, Emilie
    Chandrasekharan, Shailesh
    PHYSICS LETTERS B, 2020, 806
  • [3] Quantum simulation of the one-dimensional Fermi-Hubbard model as a Z2 lattice-gauge theory
    Khodaeva, Uliana E.
    Kovrizhin, Dmitry L.
    Knolle, Johannes
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [4] Confined Phases of One-Dimensional Spinless Fermions Coupled to Z2 Gauge Theory
    Borla, Umberto
    Verresen, Ruben
    Grusdt, Fabian
    Moroz, Sergej
    PHYSICAL REVIEW LETTERS, 2020, 124 (12)
  • [5] Confinement for all couplings in a Z2 lattice gauge theory
    Orland, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (13)
  • [6] Simulating Z2 lattice gauge theory on a quantum computer
    Charles, Clement
    Gustafson, Erik J.
    Hardt, Elizabeth
    Herren, Florian
    Hogan, Norman
    Lamm, Henry
    Starecheski, Sara
    Van de Water, Roth S.
    Wagman, Michael L.
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [7] Confinement in a Z2 lattice gauge theory on a quantum computer
    Mildenberger, Julius
    Mruczkiewicz, Wojciech
    Halimeh, Jad C.
    Jiang, Zhang
    Hauke, Philipp
    NATURE PHYSICS, 2025, 21 (02) : 312 - 317
  • [8] Simulating Z2 topological insulators with cold atoms in a one-dimensional optical lattice
    Mei, Feng
    Zhu, Shi-Liang
    Zhang, Zhi-Ming
    Oh, C. H.
    Goldman, N.
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [9] Topological defect junctions in 4-dimensional pure Z2 lattice gauge theory
    Nagoya, Y.
    PROCEEDINGS OF THE EAST ASIA JOINT SYMPOSIUM ON FIELDS AND STRINGS 2021, 2022, : 111 - 119
  • [10] Fractionalized holes in one-dimensional Z2 gauge theory coupled to fermion matter: Deconfined dynamics and emergent integrability
    Das, Aritra
    Borla, Umberto
    Moroz, Sergej
    PHYSICAL REVIEW B, 2023, 107 (06)