On Sums of Sums Involving the Von Mangoldt Function

被引:1
|
作者
Kiuchi, Isao [1 ]
Takeda, Wataru [2 ]
机构
[1] Yamaguchi Univ, Dept Math Sci, 1677-1 Yoshida, Yamaguchi, Yamaguchi 7538512, Japan
[2] Toho Univ, Dept Math, 2-2-1 Miyama, Funabashi, Chiba 2748510, Japan
关键词
Asymptotic results on arithmetical functions; von Mangoldt function; riemann zeta-function; exponential sums; anderson-apostol sums;
D O I
10.1007/s00025-024-02276-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} denote the von Mangoldt function, and (n, q) be the greatest common divisor of positive integers n and q. For any positive real numbers x and y, we shall consider several asymptotic formulas for sums of sums involving the von Mangoldt function; Sk(x,y):=& sum;n <= y & sum;q <= x & sum;d|(n,q)d Lambda qdk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S_{k}(x,y):=\sum _{n\le y}\left( \sum _{q\le x}\right. \left. \sum _{d|(n,q)}d\Lambda \left( \frac{q}{d}\right) \right) <^>{k} $$\end{document} for k=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1,2$$\end{document}.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Exponential sums involving the largest prime factor function
    De Koninck, Jean-Marie
    Katai, Imre
    ACTA ARITHMETICA, 2011, 146 (03) : 233 - 245
  • [32] CONGRUENCE IDENTITIES INVOLVING SUMS OF ODD DIVISORS FUNCTION
    Merca, Mircea
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2021, 22 (02): : 119 - 125
  • [33] Sums involving the Hurwitz zeta-function values
    Kanemitsu, S
    Schinzel, A
    Tanigawa, Y
    ZETA FUNCTIONS, TOPOLOGY AND QUANTUM PHYSICS, 2005, 14 : 81 - 90
  • [34] Evaluation of some integrals of sums involving the Mobius function
    Kotnik, Tadej
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (04) : 469 - 475
  • [35] POWER SERIES WITH THE VON MANGOLDT FUNCTION
    Kunik, Matthias
    Lucht, Lutz G.
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2012, 47 (01) : 15 - 33
  • [36] On the Hybrid Power Mean Involving the Character Sums and Dedekind Sums
    Xu, Xiaoling
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [37] A HYBIRD MEAN VALUE INVOLVING GAUSS SUMS AND CHARACTER SUMS
    Tian Qing
    Zhang Wenpeng
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2010, 41 (04): : 583 - 594
  • [38] ON THE HYBRID MEAN VALUE INVOLVING DEDEKIND SUMS AND KLOOSTERMAN SUMS
    Ma Rong
    Zhang Wenpeng
    MATHEMATICA SLOVACA, 2015, 65 (03) : 463 - 472
  • [39] A hybird mean value involving gauss sums and character sums
    Tian Q.
    Zhang W.
    Indian Journal of Pure and Applied Mathematics, 2010, 41 (4) : 583 - 594
  • [40] Asymptotics for sums of a function of normalized independent sums
    Kosinski, Kamil
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (04) : 415 - 419