Evaluation of some integrals of sums involving the Mobius function

被引:0
|
作者
Kotnik, Tadej [1 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, SI-1000 Ljubljana, Slovenia
关键词
Mobius function; Riemann hypothesis; Tauberian constants; weak Mertens hypothesis; PRIME NUMBER THEOREM;
D O I
10.1080/00207160701210125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Integrals of sums involving the Mobius function appear in a variety of problems. In this paper, a divergent integral related to several important properties of the Riemann zeta function is evaluated computationally. The order of magnitude of this integral appears to be compatible with the Riemann hypothesis, and furthermore the value of the multiplicative constant involved seems to be the smallest possible. In addition, eleven convergent integrals representing Tauberian constants that characterize the relations between certain summation methods are evaluated computationally to five or more digits of precision.
引用
收藏
页码:469 / 475
页数:7
相关论文
共 50 条
  • [1] Exponential sums involving the Mobius function
    Zhan, T
    Liu, JY
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (02): : 271 - 278
  • [2] Exponential sums involving the Mobius function
    He, Xiaoguang
    Huang, Bingrong
    ACTA ARITHMETICA, 2016, 175 (03) : 201 - 209
  • [3] A REMARK ON PARTIAL SUMS INVOLVING THE MOBIUS FUNCTION
    Tao, Terence
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (02) : 343 - 349
  • [4] EVALUATION OF SOME INTEGRALS INVOLVING PSI-FUNCTION
    GLASSER, ML
    MATHEMATICS OF COMPUTATION, 1966, 20 (94) : 332 - +
  • [5] SOME INTEGRALS INVOLVING QM FUNCTION
    NUTTALL, AH
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (01) : 95 - 96
  • [6] Some Integrals Involving the Cantor Function
    Gordon, Russell A.
    AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (03): : 218 - 227
  • [7] Certain Sums Involving Inverses of Binomial Coefficients and Some Integrals
    Yang, Jin-Hua
    Zhao, Feng-Zhen
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (08)
  • [8] Partial sums of the Mobius function
    Soundararajan, K.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 631 : 141 - 152
  • [9] SUM OF SUMS OF THE MOBIUS FUNCTION
    ANDERSON, RJ
    MURTY, MR
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (09): : 761 - 761
  • [10] On some sums involving the integral part function
    Liu, Kui
    Wu, Jie
    Yang, Zhishan
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (03) : 831 - 847