On Sums of Sums Involving the Von Mangoldt Function

被引:1
|
作者
Kiuchi, Isao [1 ]
Takeda, Wataru [2 ]
机构
[1] Yamaguchi Univ, Dept Math Sci, 1677-1 Yoshida, Yamaguchi, Yamaguchi 7538512, Japan
[2] Toho Univ, Dept Math, 2-2-1 Miyama, Funabashi, Chiba 2748510, Japan
关键词
Asymptotic results on arithmetical functions; von Mangoldt function; riemann zeta-function; exponential sums; anderson-apostol sums;
D O I
10.1007/s00025-024-02276-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} denote the von Mangoldt function, and (n, q) be the greatest common divisor of positive integers n and q. For any positive real numbers x and y, we shall consider several asymptotic formulas for sums of sums involving the von Mangoldt function; Sk(x,y):=& sum;n <= y & sum;q <= x & sum;d|(n,q)d Lambda qdk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S_{k}(x,y):=\sum _{n\le y}\left( \sum _{q\le x}\right. \left. \sum _{d|(n,q)}d\Lambda \left( \frac{q}{d}\right) \right) <^>{k} $$\end{document} for k=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1,2$$\end{document}.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] On a sum involving the Mangoldt function
    Jing Ma
    Jie Wu
    Periodica Mathematica Hungarica, 2021, 83 : 39 - 48
  • [22] An identity involving Dedekind sums and generalized Kloosterman sums
    Huan, Le
    Wang, Jingzhe
    Wang, Tingting
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (04) : 991 - 1001
  • [23] On the identity involving certain Hardy sums and Kloosterman sums
    Han Zhang
    Wenpeng Zhang
    Journal of Inequalities and Applications, 2014
  • [24] On sums of sums involving cube-full numbers
    Kiuchi, Isao
    RAMANUJAN JOURNAL, 2022, 59 (01): : 279 - 296
  • [25] On sums of sums involving cube-full numbers
    Isao Kiuchi
    The Ramanujan Journal, 2022, 59 : 279 - 296
  • [26] An identity involving Dedekind sums and generalized Kloosterman sums
    Le Huan
    Jingzhe Wang
    Tingting Wang
    Czechoslovak Mathematical Journal, 2012, 62 : 991 - 1001
  • [27] On the identity involving certain Hardy sums and Kloosterman sums
    Zhang, Han
    Zhang, Wenpeng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [28] Finite and Infinite Hypergeometric Sums Involving the Digamma Function
    Gonzalez-Santander, Juan Luis
    Sanchez Lasheras, Fernando
    MATHEMATICS, 2022, 10 (16)
  • [29] Sums of infinite series involving the Riemann zeta function
    Mortini, Raymond
    Rupp, Rudolf
    ARCHIV DER MATHEMATIK, 2024, : 163 - 172
  • [30] ON GLAISHER INFINITE SUMS INVOLVING THE INVERSE TANGENT FUNCTION
    MILLER, AR
    SRIVASTAVA, HM
    FIBONACCI QUARTERLY, 1992, 30 (04): : 290 - 294