共 50 条
On a sum involving the Mangoldt function
被引:0
|作者:
Jing Ma
Jie Wu
机构:
[1] Jilin University,School of Mathematics
[2] Université Paris-Est Créteil,CNRS LAMA 8050, Laboratoire d’Analyse et de Mathématiques Appliquées
来源:
关键词:
von Mangoldt function;
Asymptotic formula;
11N37;
11A25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let Λ(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Lambda (n)$$\end{document} be the von Mangoldt function, and let [t] be the integral part of real number t. In this note we prove that the asymptotic formula ∑n⩽xΛ([xn])=x∑d⩾1Λ(d)d(d+1)+Oε(x35/71+ε)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \sum _{n\leqslant x} \Lambda \Big (\Big [\frac{x}{n}\Big ]\Big ) = x\sum _{d\geqslant 1}\frac{\Lambda (d)}{d(d+1)} + O_{\varepsilon }\big (x^{35/71+\varepsilon }\big ) \end{aligned}$$\end{document}holds as x→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x\rightarrow \infty $$\end{document} for any ε>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon >0$$\end{document}.
引用
收藏
页码:39 / 48
页数:9
相关论文