On a sum involving the Mangoldt function

被引:0
|
作者
Jing Ma
Jie Wu
机构
[1] Jilin University,School of Mathematics
[2] Université Paris-Est Créteil,CNRS LAMA 8050, Laboratoire d’Analyse et de Mathématiques Appliquées
来源
关键词
von Mangoldt function; Asymptotic formula; 11N37; 11A25;
D O I
暂无
中图分类号
学科分类号
摘要
Let Λ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda (n)$$\end{document} be the von Mangoldt function, and let [t] be the integral part of real number t. In this note we prove that the asymptotic formula ∑n⩽xΛ([xn])=x∑d⩾1Λ(d)d(d+1)+Oε(x35/71+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{n\leqslant x} \Lambda \Big (\Big [\frac{x}{n}\Big ]\Big ) = x\sum _{d\geqslant 1}\frac{\Lambda (d)}{d(d+1)} + O_{\varepsilon }\big (x^{35/71+\varepsilon }\big ) \end{aligned}$$\end{document}holds as x→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\rightarrow \infty $$\end{document} for any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}.
引用
收藏
页码:39 / 48
页数:9
相关论文
共 50 条
  • [1] On a sum involving the Mangoldt function
    Ma, Jing
    Wu, Jie
    PERIODICA MATHEMATICA HUNGARICA, 2021, 83 (01) : 39 - 48
  • [2] On a sum involving the von Mangoldt and the integral part function
    Feng, Ya-Fang
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2024, 39 (04)
  • [3] ON FRACTIONAL SUM OF THE VON MANGOLDT FUNCTION
    Lu, Xiaodong
    Xu, Xinyue
    COLLOQUIUM MATHEMATICUM, 2024,
  • [4] On Sums of Sums Involving the Von Mangoldt Function
    Kiuchi, Isao
    Takeda, Wataru
    RESULTS IN MATHEMATICS, 2024, 79 (07)
  • [5] On a Sum Involving the Sum-of-Divisors Function
    Zhao, Feng
    Wu, Jie
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [6] On a sum involving the Mobius function
    Kiuchi, I.
    Minamide, M.
    Tanigawa, Y.
    ACTA ARITHMETICA, 2015, 169 (02) : 149 - 168
  • [7] On a sum involving the divisor function
    Ma, Jing
    Sun, Huayan
    PERIODICA MATHEMATICA HUNGARICA, 2021, 83 (02) : 185 - 191
  • [8] On a sum involving the Euler function
    Zhai, Wenguang
    JOURNAL OF NUMBER THEORY, 2020, 211 : 199 - 219
  • [9] On a sum involving the divisor function
    Jing Ma
    Huayan Sun
    Periodica Mathematica Hungarica, 2021, 83 : 185 - 191
  • [10] On a sum involving the Euler function
    Bordelles, Olivier
    Dai, Lixia
    Heyman, Randell
    Pan, Hao
    Shparlinski, Igor E.
    JOURNAL OF NUMBER THEORY, 2019, 202 : 278 - 297