On Sums of Sums Involving the Von Mangoldt Function

被引:1
|
作者
Kiuchi, Isao [1 ]
Takeda, Wataru [2 ]
机构
[1] Yamaguchi Univ, Dept Math Sci, 1677-1 Yoshida, Yamaguchi, Yamaguchi 7538512, Japan
[2] Toho Univ, Dept Math, 2-2-1 Miyama, Funabashi, Chiba 2748510, Japan
关键词
Asymptotic results on arithmetical functions; von Mangoldt function; riemann zeta-function; exponential sums; anderson-apostol sums;
D O I
10.1007/s00025-024-02276-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} denote the von Mangoldt function, and (n, q) be the greatest common divisor of positive integers n and q. For any positive real numbers x and y, we shall consider several asymptotic formulas for sums of sums involving the von Mangoldt function; Sk(x,y):=& sum;n <= y & sum;q <= x & sum;d|(n,q)d Lambda qdk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S_{k}(x,y):=\sum _{n\le y}\left( \sum _{q\le x}\right. \left. \sum _{d|(n,q)}d\Lambda \left( \frac{q}{d}\right) \right) <^>{k} $$\end{document} for k=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1,2$$\end{document}.
引用
收藏
页数:28
相关论文
共 50 条